forked from biobakery/galaxy_lefse
-
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathformat_input.py
executable file
·453 lines (385 loc) · 22.1 KB
/
format_input.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
#!/usr/bin/env python
import sys,os,argparse,pickle,re,numpy
#***************************************************************************************************************
#* Log of change *
#* January 16, 2014 - George Weingart - [email protected] *
#* *
#* biom Support *
#* Modified the program to enable it to accept biom files as input *
#* *
#* Added two optional input parameters: *
#* 1. biom_c is the name of the biom metadata to be used as class *
#* 2. biom_s is the name of the biom metadata to be used as subclass *
#* class and subclass are used in the same context as the original *
#* parameters class and subclass *
#* These parameters are totally optional, the default is the program *
#* chooses as class the first metadata received from the conversion *
#* of the biom file into a sequential (pcl) file as generated by *
#* breadcrumbs, and similarly, the second metadata is selected as *
#* subclass. *
#* The syntax or logic for the original non-biom case was NOT changed. *
#* *
#* <******************* IMPORTANT NOTE *************************> *
#* The biom case requires breadcrumbs and therefore there is a *
#* a conditional import of the breadcrumbs modules *
#* If the User uses a biom input and breadcrumbs is not detected, *
#* the run is abnormally ended *
#* breadcrumbs itself needs a biom environment, so if the immport *
#* of biom in breadcrumbs fails, the run is also abnormally
#* ended (Only if the input file was biom) *
#* *
#* USAGE EXAMPLES *
#* -------------- *
#* Case #1: Using a sequential file as input (Old version - did not change *
#* ./format_input.py hmp_aerobiosis_small.txt hmp_aerobiosis_small.in -c 1 -s 2 -u 3 -o 1000000 *
#* Case #2: Using a biom file as input *
#* ./format_input.py hmp_aerobiosis_small.biom hmp_aerobiosis_small.in -o 1000000 *
#* Case #3: Using a biom file as input and override the class and subclass *
#* ./format_input.py lefse.biom hmp_aerobiosis_small.in -biom_c oxygen_availability -biom_s body_site -o 1000000
#* *
#***************************************************************************************************************
def read_input_file(inp_file, CommonArea):
if inp_file.endswith('.biom'): #* If the file format is biom:
CommonArea = biom_processing(inp_file) #* Process in biom format
return CommonArea #* And return the CommonArea
with open(inp_file) as inp:
CommonArea['ReturnedData'] = [[v.strip() for v in line.strip().split("\t")] for line in inp.readlines()]
return CommonArea
def transpose(data):
return zip(*data)
def read_params(args):
parser = argparse.ArgumentParser(description='LEfSe formatting modules')
parser.add_argument('input_file', metavar='INPUT_FILE', type=str, help="the input file, feature hierarchical level can be specified with | or . and those symbols must not be present for other reasons in the input file.")
parser.add_argument('output_file', metavar='OUTPUT_FILE', type=str,
help="the output file containing the data for LEfSe")
parser.add_argument('--output_table', type=str, required=False, default="",
help="the formatted table in txt format")
parser.add_argument('-f',dest="feats_dir", choices=["c","r"], type=str, default="r",
help="set whether the features are on rows (default) or on columns")
parser.add_argument('-c',dest="class", metavar="[1..n_feats]", type=int, default=1,
help="set which feature use as class (default 1)")
parser.add_argument('-s',dest="subclass", metavar="[1..n_feats]", type=int, default=None,
help="set which feature use as subclass (default -1 meaning no subclass)")
parser.add_argument('-o',dest="norm_v", metavar="float", type=float, default=-1.0,
help="set the normalization value (default -1.0 meaning no normalization)")
parser.add_argument('-u',dest="subject", metavar="[1..n_feats]", type=int, default=None,
help="set which feature use as subject (default -1 meaning no subject)")
parser.add_argument('-m',dest="missing_p", choices=["f","s"], type=str, default="d",
help="set the policy to adopt with missin values: f removes the features with missing values, s removes samples with missing values (default f)")
parser.add_argument('-n',dest="subcl_min_card", metavar="int", type=int, default=10,
help="set the minimum cardinality of each subclass (subclasses with low cardinalities will be grouped together, if the cardinality is still low, no pairwise comparison will be performed with them)")
parser.add_argument('-biom_c',dest="biom_class", type=str,
help="For biom input files: Set which feature use as class ")
parser.add_argument('-biom_s',dest="biom_subclass", type=str,
help="For biom input files: set which feature use as subclass ")
args = parser.parse_args()
return vars(args)
def remove_missing(data,roc):
if roc == "c": data = transpose(data)
max_len = max([len(r) for r in data])
to_rem = []
for i,r in enumerate(data):
if len([v for v in r if not( v == "" or v.isspace())]) < max_len: to_rem.append(i)
if len(to_rem):
for i in to_rem.reverse():
data.pop(i)
if roc == "c": return transpose(data)
return data
def sort_by_cl(data,n,c,s,u):
def sort_lines1(a,b):
return int(a[c] > b[c])*2-1
def sort_lines2u(a,b):
if a[c] != b[c]: return int(a[c] > b[c])*2-1
return int(a[u] > b[u])*2-1
def sort_lines2s(a,b):
if a[c] != b[c]: return int(a[c] > b[c])*2-1
return int(a[s] > b[s])*2-1
def sort_lines3(a,b):
if a[c] != b[c]: return int(a[c] > b[c])*2-1
if a[s] != b[s]: return int(a[s] > b[s])*2-1
return int(a[u] > b[u])*2-1
if n == 3: data.sort(sort_lines3)
if n == 2:
if s is None:
data.sort(sort_lines2u)
else:
data.sort(sort_lines2s)
if n == 1: data.sort(sort_lines1)
return data
def group_small_subclasses(cls,min_subcl):
last = ""
n = 0
repl = []
dd = [list(cls['class']),list(cls['subclass'])]
for d in dd:
if d[1] != last:
if n < min_subcl and last != "":
repl.append(d[1])
last = d[1]
n = 1
for i,d in enumerate(dd):
if d[1] in repl: dd[i][1] = "other"
dd[i][1] = str(dd[i][0])+"_"+str(dd[i][1])
cls['class'] = dd[0]
cls['subclass'] = dd[1]
return cls
def get_class_slices(data):
previous_class = data[0][0]
previous_subclass = data[0][1]
subclass_slices = []
class_slices = []
last_cl = 0
last_subcl = 0
class_hierarchy = []
subcls = []
for i,d in enumerate(data):
if d[1] != previous_subclass:
subclass_slices.append((previous_subclass,(last_subcl,i)))
last_subcl = i
subcls.append(previous_subclass)
if d[0] != previous_class:
class_slices.append((previous_class,(last_cl,i)))
class_hierarchy.append((previous_class,subcls))
subcls = []
last_cl = i
previous_subclass = d[1]
previous_class = d[0]
subclass_slices.append((previous_subclass,(last_subcl,i+1)))
subcls.append(previous_subclass)
class_slices.append((previous_class,(last_cl,i+1)))
class_hierarchy.append((previous_class,subcls))
return dict(class_slices), dict(subclass_slices), dict(class_hierarchy)
def numerical_values(feats,norm):
mm = []
for k,v in feats.items():
feats[k] = [float(val) for val in v]
if norm < 0.0: return feats
tr = zip(*(feats.values()))
mul = []
fk = feats.keys()
hie = True if sum([k.count(".") for k in fk]) > len(fk) else False
for i in range(len(feats.values()[0])):
if hie: mul.append(sum([t for j,t in enumerate(tr[i]) if fk[j].count(".") < 1 ]))
else: mul.append(sum(tr[i]))
if hie and sum(mul) == 0:
mul = []
for i in range(len(feats.values()[0])):
mul.append(sum(tr[i]))
for i,m in enumerate(mul):
if m == 0: mul[i] = 0.0
else: mul[i] = float(norm) / m
for k,v in feats.items():
feats[k] = [val*mul[i] for i,val in enumerate(v)]
if numpy.mean(feats[k]) and (numpy.std(feats[k])/numpy.mean(feats[k])) < 1e-10:
feats[k] = [ float(round(kv*1e6)/1e6) for kv in feats[k]]
return feats
def add_missing_levels2(ff):
if sum( [f.count(".") for f in ff] ) < 1: return ff
dn = {}
added = True
while added:
added = False
for f in ff:
lev = f.count(".")
if lev == 0: continue
if lev not in dn: dn[lev] = [f]
else: dn[lev].append(f)
for fn in sorted(dn,reverse=True):
for f in dn[fn]:
fc = ".".join(f.split('.')[:-1])
if fc not in ff:
ab_all = [ff[fg] for fg in ff if (fg.count(".") == 0 and fg == fc) or (fg.count(".") > 0 and fc == ".".join(fg.split('.')[:-1]))]
ab =[]
for l in [f for f in zip(*ab_all)]:
ab.append(sum([float(ll) for ll in l]))
ff[fc] = ab
added = True
if added:
break
return ff
def add_missing_levels(ff):
if sum( [f.count(".") for f in ff] ) < 1: return ff
clades2leaves = {}
for f in ff:
fs = f.split(".")
if len(fs) < 2:
continue
for l in range(len(fs)):
n = ".".join( fs[:l] )
if n in clades2leaves:
clades2leaves[n].append( f )
else:
clades2leaves[n] = [f]
for k,v in clades2leaves.items():
if k and k not in ff:
ff[k] = [sum(a) for a in zip(*[[float(fn) for fn in ff[vv]] for vv in v])]
return ff
def modify_feature_names(fn):
ret = fn
for v in [' ',r'\$',r'\@',r'#',r'%',r'\^',r'\&',r'\*',r'\"',r'\'']:
ret = [re.sub(v,"",f) for f in ret]
for v in ["/",r'\(',r'\)',r'-',r'\+',r'=',r'{',r'}',r'\[',r'\]',
r',',r'\.',r';',r':',r'\?',r'\<',r'\>',r'\.',r'\,']:
ret = [re.sub(v,"_",f) for f in ret]
for v in ["\|"]:
ret = [re.sub(v,".",f) for f in ret]
ret2 = []
for r in ret:
if r[0] in ['0','1','2','3','4','5','6','7','8','9']:
ret2.append("f_"+r)
else: ret2.append(r)
return ret2
def rename_same_subcl(cl,subcl):
toc = []
for sc in set(subcl):
if len(set([cl[i] for i in range(len(subcl)) if sc == subcl[i]])) > 1:
toc.append(sc)
new_subcl = []
for i,sc in enumerate(subcl):
if sc in toc: new_subcl.append(cl[i]+"_"+sc)
else: new_subcl.append(sc)
return new_subcl
#*************************************************************************************
#* Modifications by George Weingart, Jan 15, 2014 *
#* If the input file is biom: *
#* a. Load an AbundanceTable (Using breadcrumbs) *
#* b. Create a sequential file from the AbundanceTable (de-facto - pcl) *
#* c. Use that file as input to the rest of the program *
#* d. Calculate the c,s,and u parameters, either from the values the User entered *
#* from the meta data values in the biom file or set up defaults *
#* <<<------------- I M P O R T A N T N O T E ------------------->> *
#* breadcrumbs src directory must be included in the PYTHONPATH *
#* <<<------------- I M P O R T A N T N O T E ------------------->> *
#*************************************************************************************
def biom_processing(inp_file):
CommonArea = dict() #* Set up a dictionary to return
CommonArea['abndData'] = AbundanceTable.funcMakeFromFile(inp_file, #* Create AbundanceTable from input biom file
cDelimiter = None,
sMetadataID = None,
sLastMetadataRow = None,
sLastMetadata = None,
strFormat = None)
#****************************************************************
#* Building the data element here *
#****************************************************************
ResolvedData = list() #This is the Resolved data that will be returned
IDMetadataName = CommonArea['abndData'].funcGetIDMetadataName() #* ID Metadataname
IDMetadata = [CommonArea['abndData'].funcGetIDMetadataName()] #* The first Row
for IDMetadataEntry in CommonArea['abndData'].funcGetMetadataCopy()[IDMetadataName]: #* Loop on all the metadata values
IDMetadata.append(IDMetadataEntry)
ResolvedData.append(IDMetadata) #Add the IDMetadata with all its values to the resolved area
for key, value in CommonArea['abndData'].funcGetMetadataCopy().iteritems():
if key != IDMetadataName:
MetadataEntry = list() #* Set it up
MetadataEntry.append(key) #* And post it to the area
for x in value:
MetadataEntry.append(x) #* Append the metadata value name
ResolvedData.append(MetadataEntry)
for AbundanceDataEntry in CommonArea['abndData'].funcGetAbundanceCopy(): #* The Abundance Data
lstAbundanceDataEntry = list(AbundanceDataEntry) #Convert tuple to list
ResolvedData.append(lstAbundanceDataEntry) #Append the list to the metadata list
CommonArea['ReturnedData'] = ResolvedData #Post the results
return CommonArea
#*******************************************************************************
#* Check the params and override in the case of biom *
#*******************************************************************************
def check_params_for_biom_case(params, CommonArea):
CommonArea['MetadataNames'] = list() #Metadata names
params['original_class'] = params['class'] #Save the original class
params['original_subclass'] = params['subclass'] #Save the original subclass
params['original_subject'] = params['subject'] #Save the original subclass
TotalMetadataEntriesAndIDInBiomFile = len(CommonArea['abndData'].funcGetMetadataCopy()) # The number of metadata entries
for i in range(0,TotalMetadataEntriesAndIDInBiomFile): #* Populate the meta data names table
CommonArea['MetadataNames'].append(CommonArea['ReturnedData'][i][0]) #Add the metadata name
#****************************************************
#* Setting the params here *
#****************************************************
if TotalMetadataEntriesAndIDInBiomFile > 0: #If there is at least one entry - has to be the subject
params['subject'] = 1
if TotalMetadataEntriesAndIDInBiomFile == 2: #If there are 2 - The first is the subject and the second has to be the metadata, and that is the class
params['class'] = 2
if TotalMetadataEntriesAndIDInBiomFile == 3: #If there are 3: Set up default that the second entry is the class and the third is the subclass
params['class'] = 2
params['subclass'] = 3
FlagError = False #Set up error flag
if not params['biom_class'] is None and not params['biom_subclass'] is None: #Check if the User passed a valid class and subclass
if params['biom_class'] in CommonArea['MetadataNames']:
params['class'] = CommonArea['MetadataNames'].index(params['biom_class']) +1 #* Set up the index for that metadata
else:
FlagError = True
if params['biom_subclass'] in CommonArea['MetadataNames']:
params['subclass'] = CommonArea['MetadataNames'].index(params['biom_subclass']) +1 #* Set up the index for that metadata
else:
FlagError = True
if FlagError == True: #* If the User passed an invalid class
print "**Invalid biom class or subclass passed - Using defaults: First metadata=class, Second Metadata=subclass\n"
params['class'] = 2
params['subclass'] = 3
return params
if __name__ == '__main__':
CommonArea = dict() #Build a Common Area to pass variables in the biom case
params = read_params(sys.argv)
#*************************************************************
#* Conditionally import breadcrumbs if file is a biom file *
#* If it is and no breadcrumbs found - abnormally exit *
#*************************************************************
if params['input_file'].endswith('.biom'):
try:
from lefsebiom.ConstantsBreadCrumbs import *
from lefsebiom.AbundanceTable import *
except ImportError:
sys.stderr.write("************************************************************************************************************ \n")
sys.stderr.write("* Error: Breadcrumbs libraries not detected - required to process biom files - run abnormally terminated * \n")
sys.stderr.write("************************************************************************************************************ \n")
exit(1)
if type(params['subclass']) is int and int(params['subclass']) < 1:
params['subclass'] = None
if type(params['subject']) is int and int(params['subject']) < 1:
params['subject'] = None
CommonArea = read_input_file(sys.argv[1], CommonArea) #Pass The CommonArea to the Read
data = CommonArea['ReturnedData'] #Select the data
if sys.argv[1].endswith('biom'): #* Check if biom:
params = check_params_for_biom_case(params, CommonArea) #Check the params for the biom case
if params['feats_dir'] == "c":
data = transpose(data)
ncl = 1
if not params['subclass'] is None: ncl += 1
if not params['subject'] is None: ncl += 1
first_line = zip(*data)[0]
first_line = modify_feature_names(list(first_line))
data = zip( first_line,
*sort_by_cl(zip(*data)[1:],
ncl,
params['class']-1,
params['subclass']-1 if not params['subclass'] is None else None,
params['subject']-1 if not params['subject'] is None else None))
# data.insert(0,first_line)
# data = remove_missing(data,params['missing_p'])
cls = {}
cls_i = [('class',params['class']-1)]
if params['subclass'] > 0: cls_i.append(('subclass',params['subclass']-1))
if params['subject'] > 0: cls_i.append(('subject',params['subject']-1))
cls_i.sort(lambda x, y: -cmp(x[1],y[1]))
for v in cls_i: cls[v[0]] = data.pop(v[1])[1:]
if not params['subclass'] > 0: cls['subclass'] = [str(cl)+"_subcl" for cl in cls['class']]
cls['subclass'] = rename_same_subcl(cls['class'],cls['subclass'])
# if 'subclass' in cls.keys(): cls = group_small_subclasses(cls,params['subcl_min_card'])
class_sl,subclass_sl,class_hierarchy = get_class_slices(zip(*cls.values()))
feats = dict([(d[0],d[1:]) for d in data])
feats = add_missing_levels(feats)
feats = numerical_values(feats,params['norm_v'])
out = {}
out['feats'] = feats
out['norm'] = params['norm_v']
out['cls'] = cls
out['class_sl'] = class_sl
out['subclass_sl'] = subclass_sl
out['class_hierarchy'] = class_hierarchy
if params['output_table']:
with open( params['output_table'], "w") as outf:
if 'class' in cls: outf.write( "\t".join(list(["class"])+list(cls['class'])) + "\n" )
if 'subclass' in cls: outf.write( "\t".join(list(["subclass"])+list(cls['subclass'])) + "\n" )
if 'subject' in cls: outf.write( "\t".join(list(["subject"])+list(cls['subject'])) + "\n" )
for k,v in out['feats'].items(): outf.write( "\t".join([k]+[str(vv) for vv in v]) + "\n" )
with open(params['output_file'], 'wb') as back_file:
pickle.dump(out,back_file)