-
Notifications
You must be signed in to change notification settings - Fork 14
/
p25p1.c
712 lines (614 loc) · 22.4 KB
/
p25p1.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
#include "dsd.h"
static unsigned char mfid_mapping[64] = {
0, 1, 2, 0, 3, 0, 4, 0,
5, 0, 6, 0, 7, 8, 9, 0,
10, 0, 11, 0, 12, 13, 14, 0,
15, 16, 17, 0, 18, 19, 20, 21,
22, 23, 0, 0, 24, 0, 0, 0,
25, 26, 0, 0, 27, 0, 0, 0,
28, 0, 29, 0, 30, 0, 31, 0,
32, 0, 0, 0, 33, 0, 34, 35
};
static const char *mfids[36] = {
"Standard (pre-2001)",
"Standard (post-2001)",
"Aselsan Inc.",
"Relm / BK Radio",
"EADS Public Safety Inc.",
"Cycomm",
"Efratom Time and Frequency Products, Inc",
"Com-Net Ericsson",
"Etherstack",
"Datron",
"Icom",
"Garmin",
"GTE",
"IFR Systems",
"INIT Innovations in Transportation, Inc",
"GEC-Marconi",
"Harris Corp.",
"Kenwood Communications",
"Glenayre Electronics",
"Japan Radio Co.",
"Kokusai",
"Maxon",
"Midland",
"Daniels Electronics Ltd.",
"Motorola",
"Thales",
"M/A-COM",
"Raytheon",
"SEA",
"Securicor",
"ADI",
"Tait Electronics",
"Teletec",
"Transcrypt International",
"Vertex Standard",
"Zetron, Inc"
};
void
read_dibit (dsd_opts* opts, dsd_state* state, unsigned char* output, unsigned int count, int* status_count)
{
unsigned int i;
for (i = 0; i < count; i++) {
if (*status_count == 35) {
// Status bits now
// TODO: do something useful with the status bits...
//int status = getDibit (opts, state);
getDibit (opts, state);
*status_count = 1;
} else {
(*status_count)++;
}
output[i] = getDibit(opts, state);
}
}
void
skip_dibit(dsd_opts* opts, dsd_state* state, unsigned int count, int* status_count)
{
unsigned int i;
for (i = 0; i < count; i++) {
if (*status_count == 35) {
// Status bits now
// TODO: do something useful with the status bits...
//int status = getDibit (opts, state);
getDibit (opts, state);
*status_count = 1;
} else {
(*status_count)++;
}
getDibit(opts, state);
}
}
/**
* Corrects a hex (12 bit) word using the Golay 23 FEC.
*/
static unsigned int
correct_hex_word (dsd_state* state, unsigned char *hex_and_parity, unsigned int codeword_bits)
{
unsigned int i, golay_codeword = 0;
// codeword now contains:
// bits 0-10: golay (23,12) parity bits
// bits 11-22: hex bits
for (i = 0; i < codeword_bits; i++) {
golay_codeword <<= 2;
golay_codeword |= hex_and_parity[i];
}
golay_codeword >>= 1;
state->debug_header_errors += Golay23_CorrectAndGetErrCount(&golay_codeword);
return golay_codeword;
}
void update_p25_error_stats (dsd_state* state, unsigned int nbits, unsigned int n_errs)
{
state->p25_bit_count += nbits;
state->p25_bit_error_count += n_errs;
while ((!(state->p25_bit_count & 1)) && (!(state->p25_bit_error_count & 1))) {
state->p25_bit_count >>= 1;
state->p25_bit_error_count >>= 1;
}
}
float get_p25_ber_estimate (dsd_state* state)
{
float ber = 0.0f;
if (state->p25_bit_count > 0) {
ber = (((float)state->p25_bit_count) * 100.0f / ((float)state->p25_bit_error_count));
}
return ber;
}
/**
* The important method that processes a full P25 HD unit.
*/
static unsigned int
processHDU(dsd_opts* opts, dsd_state* state)
{
int i;
unsigned char mfid = 0;
unsigned char algid = 0;
unsigned int talkgroup = 0;
int status_count;
unsigned char hex_and_parity[18];
unsigned char hex_data[8]; // Data in hex-words (6 bit words). A total of 8 hex words.
// we skip the status dibits that occur every 36 symbols
// the next status symbol comes in 14 dibits from here
// so we start counter at 36-14-1 = 21
status_count = 21;
// Skip the first 12 hex words, they're for an encryption IV if encryption is used,
// and otherwise are not used.
skip_dibit(opts, state, 9*12, &status_count);
// Read 8 hex words, correct them using their Golay23 parity data.
for (i = 0; i < 8; i++) {
// read both the hex word and the Golay(23, 12) parity information
read_dibit(opts, state, hex_and_parity, 9, &status_count);
// Use the Golay23 FEC to correct it.
hex_data[i] = correct_hex_word(state, hex_and_parity, 9);
}
// Skip the 16 parity hex word.
skip_dibit(opts, state, 9*16, &status_count);
// Now put the corrected data on the DSD structures
mfid = ((hex_data[0] << 2) | (hex_data[1] & 3));
// The important algorithm ID. This indicates whether the data is encrypted,
// and if so what is the encryption algorithm used.
// A code 0x80 here means that the data is unencrypted.
algid = (((hex_data[1] >> 2) << 4) | (hex_data[2] & 0x0f));
state->p25enc = (algid != 0x80);
skipDibit (opts, state, 6);
if ((mfid == 144) || (mfid == 9)) { // FIXME: only one of these is correct.
talkgroup = ((hex_data[6] << 6) | hex_data[7]);
} else {
talkgroup = (((hex_data[5] >> 2) << 12) | (hex_data[6] << 6) | (hex_data[7]));
}
state->talkgroup = talkgroup;
return mfid;
}
static unsigned int
read_and_correct_hex_word (dsd_opts* opts, dsd_state* state, int* status_count)
{
unsigned char hex_and_parity[40];
unsigned int i, value_in[4], value = 0, value_out = 0;
// Read the hexword and parity
read_dibit(opts, state, hex_and_parity, 20, status_count);
// Use Hamming to error correct the hex word
// in the bitset 9 is the left-most and 0 is the right-most
value_in[3] = value_in[2] = value_in[1] = value_in[0] = 0;
for (i=0; i<5; i++) {
value_in[0] <<= 2;
value_in[0] |= hex_and_parity[i];
value_in[1] <<= 2;
value_in[1] |= hex_and_parity[i+5];
value_in[2] <<= 2;
value_in[2] |= hex_and_parity[i+10];
value_in[3] <<= 2;
value_in[3] |= hex_and_parity[i+15];
}
value = value_in[0];
p25_Hamming10_6_4_Correct(&value);
value_in[0] >>= 4;
if (value != value_in[0]) { state->debug_header_errors++; }
value_out <<= 6;
value_out |= value;
value = value_in[1];
p25_Hamming10_6_4_Correct(&value);
value_in[1] >>= 4;
if (value != value_in[1]) { state->debug_header_errors++; }
value_out <<= 6;
value_out |= value;
value = value_in[2];
p25_Hamming10_6_4_Correct(&value);
value_in[2] >>= 4;
if (value != value_in[2]) { state->debug_header_errors++; }
value_out <<= 6;
value_out |= value;
value = value_in[3];
p25_Hamming10_6_4_Correct(&value);
value_in[3] >>= 4;
if (value != value_in[3]) { state->debug_header_errors++; }
value_out <<= 6;
value_out |= value;
return value_out;
}
static void
processLDU1 (dsd_opts* opts, dsd_state* state, char *outstr, unsigned int outlen)
{
unsigned int i, lsd1 = 0, lsd2 = 0;
unsigned int lcinfo[3]; // Data in hex-words (6 bit words), stored packed in groups of four, in a uint32_t
unsigned char imbe_dibits[72];
unsigned char lsd[16];
unsigned char mfid;
int status_count;
// we skip the status dibits that occur every 36 symbols
// the first IMBE frame starts 14 symbols before next status
// so we start counter at 36-14-1 = 21
status_count = 21;
// IMBE 1
read_dibit(opts, state, imbe_dibits, 72, &status_count);
process_IMBE(opts, state, imbe_dibits);
// IMBE 2
read_dibit(opts, state, imbe_dibits, 72, &status_count);
process_IMBE(opts, state, imbe_dibits);
// Read data after IMBE 2
lcinfo[0] = read_and_correct_hex_word (opts, state, &status_count);
// IMBE 3
read_dibit(opts, state, imbe_dibits, 72, &status_count);
process_IMBE(opts, state, imbe_dibits);
// Read data after IMBE 3
lcinfo[1] = read_and_correct_hex_word (opts, state, &status_count);
// IMBE 4
read_dibit(opts, state, imbe_dibits, 72, &status_count);
process_IMBE(opts, state, imbe_dibits);
// Read data after IMBE 4
lcinfo[2] = read_and_correct_hex_word (opts, state, &status_count);
// IMBE 5
read_dibit(opts, state, imbe_dibits, 72, &status_count);
process_IMBE(opts, state, imbe_dibits);
// Read data after IMBE 5
skip_dibit (opts, state, 20, &status_count);
// IMBE 6
read_dibit(opts, state, imbe_dibits, 72, &status_count);
process_IMBE(opts, state, imbe_dibits);
// Read data after IMBE 6
skip_dibit (opts, state, 20, &status_count);
// IMBE 7
read_dibit(opts, state, imbe_dibits, 72, &status_count);
process_IMBE(opts, state, imbe_dibits);
// Read data after IMBE 7
skip_dibit (opts, state, 20, &status_count);
// IMBE 8
read_dibit(opts, state, imbe_dibits, 72, &status_count);
process_IMBE(opts, state, imbe_dibits);
// Read data after IMBE 8: LSD (low speed data)
read_dibit(opts, state, lsd, 16, &status_count);
for (i=0; i<8; i++) {
lsd1 <<= 2;
lsd1 |= lsd[i];
lsd2 <<= 2;
lsd2 |= lsd[i+8];
}
p25_lsd_cyclic1685_Correct(&lsd1);
p25_lsd_cyclic1685_Correct(&lsd2);
// TODO: do something useful with the LSD bytes...
// IMBE 9
read_dibit(opts, state, imbe_dibits, 72, &status_count);
process_IMBE(opts, state, imbe_dibits);
// trailing status symbol
getDibit (opts, state);
state->talkgroup = (lcinfo[1] & 0xFFFF);
state->radio_id = lcinfo[2];
mfid = ((lcinfo[0] >> 10) & 0xFF);
snprintf(outstr, outlen, "e: %u, mfid: %s (%u), talkgroup: %u, src: %u, lsd: 0x%02x/0x%02x",
state->errs2, mfids[mfid_mapping[mfid&0x3f]], mfid, state->talkgroup, state->radio_id, lsd1, lsd2);
//decode_p25_lcf(lcinfo);
}
static unsigned int
processLDU2 (dsd_opts * opts, dsd_state * state)
{
unsigned char imbe_dibits[72];
unsigned char lsd[16];
unsigned int i, lsd1 = 0, lsd2 = 0;
int status_count;
// we skip the status dibits that occur every 36 symbols
// the first IMBE frame starts 14 symbols before next status
// so we start counter at 36-14-1 = 21
status_count = 21;
// IMBE 1
read_dibit(opts, state, imbe_dibits, 72, &status_count);
process_IMBE(opts, state, imbe_dibits);
// IMBE 2
read_dibit(opts, state, imbe_dibits, 72, &status_count);
process_IMBE(opts, state, imbe_dibits);
// Skip data after IMBE 2
skip_dibit (opts, state, 20, &status_count);
// IMBE 3
read_dibit(opts, state, imbe_dibits, 72, &status_count);
process_IMBE(opts, state, imbe_dibits);
// Skip data after IMBE 3
skip_dibit (opts, state, 20, &status_count);
// IMBE 4
read_dibit(opts, state, imbe_dibits, 72, &status_count);
process_IMBE(opts, state, imbe_dibits);
// Skip data after IMBE 4
skip_dibit (opts, state, 20, &status_count);
// IMBE 5
read_dibit(opts, state, imbe_dibits, 72, &status_count);
process_IMBE(opts, state, imbe_dibits);
// Skip data after IMBE 5
skip_dibit (opts, state, 20, &status_count);
// IMBE 6
read_dibit(opts, state, imbe_dibits, 72, &status_count);
process_IMBE(opts, state, imbe_dibits);
// Skip data after IMBE 6
skip_dibit (opts, state, 20, &status_count);
// IMBE 7
read_dibit(opts, state, imbe_dibits, 72, &status_count);
process_IMBE(opts, state, imbe_dibits);
// Skip data after IMBE 7
skip_dibit (opts, state, 20, &status_count);
// IMBE 8
read_dibit(opts, state, imbe_dibits, 72, &status_count);
process_IMBE(opts, state, imbe_dibits);
// Read data after IMBE 8: LSD (low speed data)
read_dibit(opts, state, lsd, 16, &status_count);
for (i=0; i<8; i++) {
lsd1 <<= 2;
lsd1 |= lsd[i];
lsd2 <<= 2;
lsd2 |= lsd[i+8];
}
p25_lsd_cyclic1685_Correct(&lsd1);
p25_lsd_cyclic1685_Correct(&lsd2);
//state->p25lsd1 = lsd1;
//state->p25lsd2 = lsd2;
// TODO: do something useful with the LSD bytes...
// IMBE 9
read_dibit(opts, state, imbe_dibits, 72, &status_count);
process_IMBE(opts, state, imbe_dibits);
// trailing status symbol
getDibit (opts, state);
return state->errs2;
}
static void
processTDU (dsd_opts* opts, dsd_state* state)
{
// we skip the status dibits that occur every 36 symbols
// the first IMBE frame starts 14 symbols before next status
// so we start counter at 36-14-1 = 21
// Next 14 dibits should be zeros
skipDibit(opts, state, 14);
// Next we should find an status dibit
getDibit (opts, state);
}
static void
processTDULC (dsd_opts* opts, dsd_state* state, char *outstr, unsigned int outlen)
{
unsigned int i, lcinfo[3];
unsigned char hex_and_parity[24];
unsigned char mfid;
int status_count;
// we skip the status dibits that occur every 36 symbols
// the first IMBE frame starts 14 symbols before next status
// so we start counter at 36-14-1 = 21
status_count = 21;
for (i = 0; i < 3; i++) {
// Read both the hex word and the Golay(23, 12) parity information
// Use the Golay23 FEC to correct it.
read_dibit(opts, state, hex_and_parity, 24, &status_count);
lcinfo[i] = correct_hex_word(state, hex_and_parity, 12);
lcinfo[i] |= (correct_hex_word(state, hex_and_parity+12, 12) << 12);
}
skip_dibit(opts, state, 72, &status_count);
// Next 10 dibits should be zeros
skip_dibit(opts, state, 10, &status_count);
// trailing status symbol
getDibit (opts, state);
mfid = ((lcinfo[0] >> 10) & 0xFF);
snprintf(outstr, outlen, "TDULC: mfid: %s (%u)", mfids[mfid_mapping[mfid&0x3f]], mfid);
//decode_p25_lcf(lcinfo);
}
/* Symbol interleaving, derived from CAI specification table 7.4
*/
static const size_t INTERLEAVING[] = {
0, 13, 25, 37,
1, 14, 26, 38,
2, 15, 27, 39,
3, 16, 28, 40,
4, 17, 29, 41,
5, 18, 30, 42,
6, 19, 31, 43,
7, 20, 32, 44,
8, 21, 33, 45,
9, 22, 34, 46,
10, 23, 35, 47,
11, 24, 36, 48,
12
};
typedef struct _Channel {
uint8_t valid, tdma;
uint16_t bandwidth, step;
float freq;
} Channel;
static Channel p25_default_channels[17];
static inline void p25_add_channel(uint8_t chan_id, unsigned int freq, uint16_t step, uint16_t bw_hz, uint8_t is_tdma) {
p25_default_channels[chan_id & 0x0f].freq = 5.0f * (float)freq;
p25_default_channels[chan_id & 0x0f].bandwidth = bw_hz;
p25_default_channels[chan_id & 0x0f].step = step;
p25_default_channels[chan_id & 0x0f].tdma = is_tdma;
p25_default_channels[chan_id & 0x0f].valid = 1;
}
static inline float p25_chid_to_freq(uint8_t chan_id, unsigned int channel) {
if (p25_default_channels[chan_id & 0x0f].valid) {
Channel *temp_chan = &p25_default_channels[chan_id];
return (temp_chan->freq + temp_chan->step * (channel >> temp_chan->tdma));
}
return 0;
}
static void
processTSBK(unsigned char out[12])
{
unsigned int opcode = (out[0] & 0x3f);
unsigned char iden = (out[2] >> 4);
unsigned int freq = ((out[6] << 24) | (out[7] << 16) | (out[8] << 8) | (out[9] << 0));
unsigned int step = 125*(((out[4] << 8) | out[5]) & 0x3ff);
unsigned int chan = (((out[7] << 8) | (out[8] << 0)) & 0x0fff);
unsigned char chan_id = (out[7] >> 4);
float f1 = p25_chid_to_freq(chan_id, chan);
printf("TSBK: mfid: 0x%02x, lb: %u, opcode: 0x%02x -> ", out[1], (out[0] >> 7), opcode);
if (opcode == 0x16) { // sndcp_data_ch
unsigned short ch1 = ((out[3] << 8) | out[4]);
unsigned short ch2 = ((out[5] << 8) | out[6]);
printf("sndcp_data_ch: Ch1: %u -> Ch2: %u\n", ch1, ch2);
} else if (opcode == 0x34) { // iden_up vhf uhf
unsigned short bwvu = (625 << (out[2] & 0x01));
signed int toff = (((out[3] << 6) | (out[4] >> 2)) & 0x1fff);
unsigned char toff_sign = (out[3] & 0x80);
if (toff_sign == 0) {
toff = 0 - toff;
}
p25_add_channel(iden, freq, step, bwvu, 0);
printf("iden_up_vhf/uhf iden: %u, toff: %.5fkHz, spacing: %u, freq: %.6fMHz [mob Tx%c]\n",
iden, (toff * step * 10e-6f), step, ((5 * freq * 10e-2f)+(toff*step)*10e-6f), (toff_sign ? '+' : '-'));
} else if (opcode == 0x33) { // iden_up_tdma
unsigned char slots_per_carrier[] = {1,1,1,2,4,2};
unsigned char channel_type = (out[3] & 0x0f);
signed int toff = (((out[3] << 6) | (out[4] >> 2)) & 0x1fff);
unsigned char toff_sign = (out[3] & 0x80);
if (toff_sign == 0) {
toff = 0 - toff;
}
p25_add_channel(iden, freq, step, 625, slots_per_carrier[channel_type]);
printf("iden_up_tdma: iden: %u: freq: %.6fMHz, offset: %d, step: %u, slots/carrier: %u\n",
iden, ((5 * freq * 10e-4f)+toff)*10e-4f, toff, step, slots_per_carrier[channel_type]);
} else if (opcode == 0x3d) { // iden_up
unsigned short bw = (((out[2] << 5) | (out[3] >> 3)) & 0x01ff);
signed short toff = (((out[3] << 6) | (out[4] >> 2)) & 0xff);
unsigned char toff_sign = (out[3] & 0x04);
if (toff_sign == 0) {
toff = 0 - toff;
}
p25_add_channel(iden, freq, step, bw, 0);
printf("iden_up: iden: %u, toff: %d, spacing: %u, freq: %.6fMHz [mob Tx%c]\n",
iden, toff, step, ((5 * freq * 10e-4f)+(2*toff))*10e-4f, (toff_sign ? '+' : '-'));
} else if (opcode == 0x3a) { // rfss_status
unsigned short syid = (((out[3] & 0x0f) << 8) | out[4]);
printf("rfss_status: LRA: %u, syid: %u, rfid: %u, siteid: %u, Ch1: iden: %u, ch: %u (%.7fMHz)\n",
out[2], syid, out[5], out[6], chan_id, chan, (f1 * 10e-7f));
} else if (opcode == 0x39) { // secondary CC
unsigned int ch1 = ((out[4] << 8) | (out[5] << 0));
printf("Secondary CC: rfid %u, siteid: %u, Ch1: iden: %u, ch: %u -> Ch2: iden: %u, ch: %u\n",
out[2], out[3], (ch1 >> 12), (ch1 & 0x0fff), chan_id, chan);
} else if (opcode == 0x3b) { // network status
unsigned short wacn = ((out[3] << 12) | (out[4] << 4) | (out[5] >> 4));
unsigned short syid = (((out[5] & 0x0f) << 8) | out[6]);
printf("Network Status: LRA: %u, WACN: 0x%04x, syid: %u, Ch1: iden: %u, ch: %u (%.7fMHz)\n",
out[2], wacn, syid, chan_id, chan, (f1 * 10e-7f));
} else if (opcode == 0x3c) { // adjacent_status
unsigned short syid = (((out[3] & 0x0f) << 8) | out[4]);
printf("Adjacent Status: LRA: %u, syid: %u, rfid: %u, siteid: %u, Ch1: iden: %u, ch: %u (%.7fMHz)\n",
out[2], syid, out[5], out[6], chan_id, chan, (f1 * 10e-7f));
} else if (opcode == 0x20) { // Acknowledge response
unsigned short ga = ((out[5] << 8) | out[6]);
printf("Acknowledge Response: GA: %u, SA: %u, Reserved: %u\n", ga, (freq & 0x00FFFFFF), out[5]);
} else if (opcode == 0x2c) { // Unit Registration Response
unsigned short si = ((out[5] << 8) | out[6]);
printf("Unit Registration Response: SA: %u, Source ID: %u\n", (freq & 0x00FFFFFF), si);
} else if (opcode == 0x2f) { // Unit DeRegistration Ack
printf("Unit Deregistration Acknowledgement: Source ID: %u\n", (freq & 0x00FFFFFF));
} else if (opcode == 0x28) { // Unit Group Affiliation Response
unsigned short ga = ((out[5] << 8) | out[6]);
unsigned short aga = ((out[3] << 8) | out[4]);
printf("Unit Group Affiliation: Source ID: %u, Group Address: %u, Anouncement Group: %u\n",
(freq & 0x00FFFFFF), ga, aga);
} else {
printf("???\n");
}
}
static void
processTSDU(dsd_opts* opts, dsd_state* state)
{
unsigned char last_block = 0, l = 0;
unsigned char raw_dibits[98];
unsigned char out[12];
unsigned int i, err = 0;
int status_count;
// we skip the status dibits that occur every 36 symbols
// the next status symbol comes in 14 dibits from here
// so we start counter at 36-14-1 = 21
status_count = 21;
while (!last_block && (l < 3)) {
unsigned char trellis_buffer[49];
read_dibit(opts, state, raw_dibits, 98, &status_count);
for (i = 0; i < 49; i++) {
unsigned int k = INTERLEAVING[i];
unsigned char t = ((raw_dibits[2*k] << 2) | (raw_dibits[2*k+1] << 0));
trellis_buffer[i] = t;
}
for (i = 0; i < 49; i++) {
raw_dibits[49] = 0;
}
err = p25_trellis_1_2_decode(trellis_buffer, 49, raw_dibits); /* raw_dibits actually has decoded dibits here! */
for(i = 0; i < 12; ++i) {
out[i] = ((raw_dibits[4*i] << 6) | (raw_dibits[4*i+1] << 4) | (raw_dibits[4*i+2] << 2) | (raw_dibits[4*i+3] << 0));
}
if (err) {
state->debug_data_errors++;
printf("TSBK: mfid: 0x%02x, lb: %u, opcode: 0x%02x, err: trellis decode failed, offset: %u\n",
out[1], (out[0] >> 7), (out[0] & 0x3f), err);
} else {
processTSBK(out);
}
last_block = (out[0] >> 7);
l++;
}
// trailing status symbol
getDibit (opts, state);
}
void process_p25_frame(dsd_opts *opts, dsd_state *state, char *tmpStr, unsigned int tmpLen)
{
unsigned char duid = state->duid;
unsigned int mfid = 0, errs2 = 0;
if (duid == 5) {
if ((opts->mbe_out_dir[0] != 0) && (opts->mbe_out_fd == -1)) {
state->errs2 = 0;
openMbeOutFile (opts, state);
}
}
if (duid == 0) { // Header Data Unit
state->lastp25type = 2;
mfid = processHDU (opts, state);
snprintf(tmpStr, 1023, "HDU: mfid: %s (%u), talkgroup: %u",
mfids[mfid_mapping[(mfid>>2)&0x3f]], mfid, state->talkgroup);
} else if (duid == 5) { // Logical Link Data Unit 1
state->lastp25type = 1;
strcpy(tmpStr, "LDU1: ");
processLDU1 (opts, state, tmpStr+6, 1017);
} else if (duid == 10) { // Logical Link Data Unit 2
if (state->lastp25type != 1) {
snprintf(tmpStr, 1023, "Ignoring LDU2 not preceeded by LDU1");
state->lastp25type = 0;
} else {
state->lastp25type = 2;
errs2 = processLDU2 (opts, state);
snprintf(tmpStr, 1023, "LDU2: e: %u", errs2);
}
} else if ((duid == 3) || (duid == 15)) {
if (opts->mbe_out_dir[0] != 0) {
closeMbeOutFile (opts, state);
state->errs2 = 0;
}
state->talkgroup = 0;
state->lastp25type = 0;
if (duid == 3) { // Terminator without subsequent Link Control
processTDU (opts, state);
strcpy(tmpStr, "TDU");
} else { // Terminator with subsequent Link Control
processTDULC (opts, state, tmpStr, 1023);
}
} else if (duid == 7) { // 13 -> 0111 = 7
state->talkgroup = 0;
state->lastp25type = 3;
processTSDU (opts, state);
//skipDibit (opts, state, 328-25);
strcpy(tmpStr, "TSDU");
// try to guess based on previous frame if unknown type
} else if (state->lastp25type == 1) {
// Guess that the state is LDU2
state->lastp25type = 2;
errs2 = processLDU2 (opts, state);
snprintf(tmpStr, 1023, "(LDU2): e: %u", errs2);
} else if (state->lastp25type == 2) {
if ((opts->mbe_out_dir[0] != 0) && (opts->mbe_out_fd == -1)) {
openMbeOutFile (opts, state);
}
// Guess that the state is LDU1
state->lastp25type = 1;
strcpy(tmpStr, "(LDU1): ");
processLDU1 (opts, state, tmpStr+8, 1015);
} else if (state->lastp25type == 3) {
// Guess that the state is TSDU
state->lastp25type = 3;
processTSDU (opts, state);
strcpy(tmpStr, "(TSDU)");
} else {
state->lastp25type = 0;
strcpy(tmpStr, "Unknown DUID");
}
}