-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdemoedgeboxesopencv.py
150 lines (116 loc) · 6.56 KB
/
demoedgeboxesopencv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
import os
import math
import argparse
import colorsys
import numpy as np
import matplotlib, matplotlib.pyplot as plt
import cv2
def edgesSpatialGrads(img, mode = 'canny'):
assert img.dtype == np.uint8 and img.ndim == 3 and img.shape[-1] == 3
img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
img_gray_blur = cv2.GaussianBlur(img_gray, (3,3), SigmaX = 0, SigmaY = 0)
if mode == 'canny':
return cv2.Canny(image = img_gray_blur, threshold1 = 100, threshold2 = 200)
if mode == 'sobel':
#https://docs.opencv.org/3.4/d2/d2c/tutorial_sobel_derivatives.html
#https://learnopencv.com/edge-detection-using-opencv/
grad_x = cv2.Sobel(img_gray_blur, ddepth = -1, dx = 1, dy = 0, ksize = 3, scale = 1, delta = 0, borderType = cv2.BORDER_DEFAULT)
grad_y = cv2.Sobel(img_gray_blur, ddepth = -1, dx = 0, dy = 1, ksize = 3, scale = 1, delta = 0, borderType = cv2.BORDER_DEFAULT)
return np.abs(grad_x) + np.abs(grady_y)
def computeOrientation(E, gradientNormalizationRadius = 4, eps = 1e-5):
assert E.dtype == np.float32 and E.ndim == 2
nrml = (gradientNormalizationRadius + 1.0) ** 2
kernelXY = np.array([(i + 1) / nrml for i in range(1 + gradientNormalizationRadius)] + [(i + 1) / nrml for i in range(0 + gradientNormalizationRadius)][::-1])
E_conv = cv2.sepFilter2D(E, ddepth = -1, kernelX = kernelXY, kernelY = kernelXY)
Oxx = cv2.Sobel(E_conv, ddepth = -1, dx = 2, dy = 0)
Oxy = cv2.Sobel(E_conv, ddepth = -1, dx = 1, dy = 1)
Oyy = cv2.Sobel(E_conv, ddepth = -1, dx = 0, dy = 2)
xysign = -np.sign(Oxy)
arctan = np.arctan(Oyy * xysign / (Oxx + eps))
res = np.fmod(np.where(arctan > 0, arctan, arctan + math.pi), math.pi)
return res
def edgesNms(E, O, r = 2):
# https://github.com/pdollar/edges/blob/master/private/edgesNmsMex.cpp
assert E.dtype == np.float32 and E.ndim == 2
assert O.dtype == np.float32 and O.ndim == 2
res = E.copy()
Ocos, Osin = np.cos(O), np.sin(O)
ds = sorted(set(range(-r, r + 1)) - set([0]))
for y in range(E.shape[0]):
for x in range(E.shape[1]):
e = E[y, x]
if e == 0:
continue
(coso, sino) = (Ocos[y, x], Osin[y, x])
for d in ds:
ydsin = max(0, min(y + d * sino, E.shape[0] - 1.001))
xdcos = max(0, min(x + d * coso, E.shape[1] - 1.001))
# bilinear interpolation
(x0, y0) = (int(xdcos), int(ydsin))
(x1, y1) = (x0 + 1, y0 + 1)
(dx0, dy0) = (xdcos - x0, ydsin - y0)
(dx1, dy1) = (1 - dx0, 1 - dy0)
ed = E[y0, x0] * dx1 * dy1 + E[y0, x1] * dx0 * dy1 + E[y1, x0] * dx1 * dy0 + E[y1, x1] * dx0 * dy0
if e < ed:
res[y, x] = 0
break
return res
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--sed-model-path', default = 'examples/model.yml.gz')
parser.add_argument('--input-path', '-i', default = 'examples/astronaut.jpg')
parser.add_argument('--output-dir', '-o', default = './out')
parser.add_argument('--topk', type = int, default = 32)
parser.add_argument('--colorwheel-grid', type = int, default = 64)
args = parser.parse_args()
os.makedirs(args.output_dir, exist_ok = True)
output_path = os.path.join(args.output_dir, os.path.basename(args.input_path))
img_rgbhw3_255 = plt.imread(args.input_path)
img_rgbhw3_1 = np.divide(img_rgbhw3_255, 255, dtype = 'float32')
edges_sed = cv2.ximgproc.createStructuredEdgeDetection(args.sed_model_path).detectEdges(img_rgbhw3_1) # orimap_sed = sed.computeOrientation(edges_sed) # edgesnms_sed = sed.edgesNms(edges_sed, orimap_sed)
orimap_sed = computeOrientation(edges_sed)
edgesnms_sed = edgesNms(edges_sed, orimap_sed)
edges_canny = np.divide(edgesSpatialGrads(img_rgbhw3_255), 255, dtype = 'float32')
orimap_canny = computeOrientation(edges_canny)
edgesnms_canny = edgesNms(edges_canny, orimap_canny)
plt.figure(figsize = (16, 6))
for r, (title, img, edges, edgesnms, orimap) in enumerate([('sed', img_rgbhw3_1, edges_sed, edgesnms_sed, orimap_sed), ('canny', img_rgbhw3_1, edges_canny, edgesnms_canny, orimap_canny)]):
edgeboxes = cv2.ximgproc.createEdgeBoxes()
edgeboxes.setMaxBoxes(args.topk)
boxes_xywh, boxes_objn = edgeboxes.getBoundingBoxes(edgesnms, orimap)
print('img_rgbhw3_255:', img.shape, img.dtype, '[', img.min((0, 1)), ',', img.max((0, 1)), ']')
print('edges:', edges.shape, edges.dtype, '[', edges.min(), ',', edges.max(), ']', 'edgesnms:', edgesnms.shape, edgesnms.dtype)
print('orimap:', orimap.shape, orimap.dtype, '[', orimap.min(), ',', orimap.max(), ']')
print('boxes_xywh:', boxes_xywh.shape, boxes_xywh.dtype, '[', boxes_xywh.min(0), boxes_xywh.max(0), ']', 'boxes_objn:', boxes_objn.shape, boxes_objn.dtype, '[', boxes_objn.min(), ',', boxes_objn.max(), ']')
plt.subplot(2, 4, 4 * r + 1)
plt.title('#boxes = {topk}'.format(topk = args.topk))
plt.imshow(img)
colormap = matplotlib.colormaps['jet']
for (x, y, w, h), o in zip(boxes_xywh, boxes_objn):
plt.gca().add_patch(matplotlib.patches.Rectangle((x, y), w, h, linewidth = 1, edgecolor = colormap( float(o - boxes_objn.min()) / boxes_objn.ptp() ), facecolor = 'none'))
plt.axis('off')
plt.subplot(2, 4, 4 * r + 2)
plt.title('edges ' + title)
plt.imshow(edges)
plt.colorbar()
plt.clim([0, 1])
plt.axis('off')
plt.subplot(2, 4, 4 * r + 3)
plt.title('edgesnms')
plt.imshow(edgesnms)
plt.colorbar()
plt.clim([0, 1])
plt.axis('off')
plt.subplot(2, 4, 4 * r + 4)
plt.title('orimap_hsv')
xx, yy = np.meshgrid(np.linspace(-1.0, 1.0, args.colorwheel_grid), np.linspace(-1.0, 1.0, args.colorwheel_grid))
#TODO: real orimap is from 0 to pi + colorwheel is yy < 0
H = (np.arctan2(xx, yy) + math.pi) / (math.pi * 2)
S = np.sqrt(xx ** 2 + yy ** 2)
colorwheel = matplotlib.colors.hsv_to_rgb(np.dstack([H, S, np.where((S < 1) & (S > 0.8) & (yy < 0), 1, 0) ]))
orimap_hsv = matplotlib.colors.hsv_to_rgb(np.dstack([orimap / math.pi, np.full_like(orimap, 1.0), np.full_like(orimap, 1.0)])) * edges[..., None] + 1 * (1 - edges[..., None])
orimap_hsv[:colorwheel.shape[0], :colorwheel.shape[1]] = colorwheel
plt.imshow(orimap_hsv)
plt.axis('off')
plt.savefig(output_path, dpi = 300)
print(output_path)