-
Notifications
You must be signed in to change notification settings - Fork 0
/
app.py
95 lines (71 loc) · 3.04 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
################## IMPORTS #####################
from PIL.Image import Image
from keras_vggface.utils import preprocess_input
from keras_vggface.vggface import VGGFace
import pickle
from sklearn.metrics.pairwise import cosine_similarity
import streamlit as st
from PIL import Image
import os
import cv2
from mtcnn import MTCNN
import numpy as np
################## BUILDING MODEL #####################
detector = MTCNN()
model = VGGFace(model='resnet50',
include_top=False,
input_shape=(224, 224, 3),
pooling='avg')
################## LOADING IMAGE FEATURES & FILENAME FEATURES #####################
feature_list = pickle.load(open('Embedding.pkl', 'rb'))
filenames = pickle.load(open('filename.pkl', 'rb'))
################## SAVING UPLOADED IMAGES INTO SEPERATE FOLDER #####################
def save_uploaded_image(uploaded_image):
try:
with open(os.path.join('uploads', uploaded_image.name), 'wb') as f:
f.write(uploaded_image.getbuffer())
return True
except:
return False
################## CREATING FEATURE EXTRACTION FUNCTION #####################
# In this function hyperparameter required are image path, model and detector
def extract_features(img_path, model, detector):
img = cv2.imread(img_path)
results = detector.detect_faces(img)
x, y, width, height = results[0]['box']
face = img[y:y + height, x:x + width]
# extract its features
image = Image.fromarray(face).resize((224, 224))
face_array = np.asarray(image)
face_array = face_array.astype('float32')
expanded_img = np.expand_dims(face_array, axis=0)
preprocessed_img = preprocess_input(expanded_img)
result = model.predict(preprocessed_img).flatten()
return result
################## CREATING RECOMENDATION FUNCTION #####################
def recommend(feature_list, features):
similarity = []
for i in range(len(feature_list)):
similarity.append(cosine_similarity(features.reshape(1, -1), feature_list[i].reshape(1, -1))[0][0])
return sorted(list(enumerate(similarity)), reverse=True, key=lambda x: x[1])[0][0]
################## DEPLOYING PROJECT ON STREAMLIT #####################
st.title('Dopplganger of Bollywood Celebrity')
uploaded_image = st.file_uploader('Upload An Image')
if uploaded_image is not None:
# save the image in a directory
if save_uploaded_image(uploaded_image):
# load the image
display_image = Image.open(uploaded_image)
# extract the features
features = extract_features(os.path.join('uploads', uploaded_image.name), model, detector)
# recommend
index_pos = recommend(feature_list, features)
predicted_actor = " ".join(filenames[index_pos].split('\\')[1].split('_'))
# display
col1, col2 = st.columns(2)
with col1:
st.header('Uploaded Image')
st.image(display_image)
with col2:
st.header("Image Appearance Is More Likely To " + predicted_actor)
st.image(filenames[index_pos], width=300)