-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
40 lines (29 loc) · 1.08 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
from flask import Flask, render_template, request
from sklearn.linear_model import LinearRegression
from sklearn.preprocessing import LabelEncoder
import pandas as pd
data = pd.read_csv('50_Startups.csv')
le = LabelEncoder()
le.fit(data['State'])
data['State'] = le.transform(data['State'])
x = data.iloc[:, 0: -1]
y = data.iloc[:, -1]
model = LinearRegression()
model.fit(x, y)
app = Flask(__name__)
@app.route('/')
def start():
return render_template('index.html')
@app.route('/predict', methods=['GET', 'POST'])
def predict():
if request.method == 'POST':
rd = int(request.form['R&D value'])
administration = int(request.form['Administration'])
market = int(request.form['Market'])
state = int(request.form['State'])
usr = {'R&D Spend': [rd], 'Administration': [administration], 'Marketing spend': [market], 'State': [state]}
usr = pd.DataFrame(usr)
pred = model.predict(usr)
return render_template('index.html', profit=pred)
if __name__ == '__main__':
app.run(debug=True)