-
Notifications
You must be signed in to change notification settings - Fork 3
/
bpf.lua
1261 lines (1215 loc) · 47.1 KB
/
bpf.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
-- Translate LuaJIT function into eBPF bytecode.
--
-- The code generation phase is currently one-pass and produces:
-- * Compiled code in eBPF bytecode format (https://www.kernel.org/doc/Documentation/networking/filter.txt)
-- * Variables with liveness analysis and other meta (spill information, compile-time value)
--
-- The code generator optimises as much as possible in single pass:
-- * Fold compile-time expressions and constant propagation
-- * Basic control flow analysis with dead code elimination (based on compile-time expressions)
-- * Single-pass optimistic register allocation
--
-- The first pass doesn't have variable lifetime visibility yet, so it relies on rewriter for further
-- optimisations such as:
-- * Dead store elimination (first-pass doesn't know if/when the variable is going to be used)
-- * Common sub-expression elimination (relies on DCE and liveness analysis)
-- * Orphan JMP elimination (removing this in first pass would break previous JMP targets)
-- * Better register allocation (needs to be recomputed after optimisations)
local ffi = require('ffi')
local bit = require('bit')
local band = bit.band
local S = require('syscall')
local c, t = S.c, S.t
local bytecode = require('bpf.ljbytecode')
local cdef = require('bpf.cdef')
local proto = require('bpf.proto')
local builtins = require('bpf.builtins')
-- Constants
local ALWAYS, NEVER = -1, -2
local BPF, CMD = ffi.typeof('struct bpf'), ffi.typeof('struct bpf_cmd')
local HELPER = ffi.typeof('struct bpf_func_id')
-- Symbolic table of constant expressions over numbers
local const_expr = {
ADD = function (a, b) return a + b end,
SUB = function (a, b) return a - b end,
DIV = function (a, b) return a / b end,
MOD = function (a, b) return a % b end,
JEQ = function (a, b) return a == b end,
JNE = function (a, b) return a ~= b end,
JGE = function (a, b) return a >= b end,
JGT = function (a, b) return a > b end,
}
local const_width = {
[1] = BPF.B, [2] = BPF.H, [4] = BPF.W, [8] = BPF.DW,
}
-- Built-ins that are strict only (never compile-time expandable)
local builtins_strict = {
[ffi.new] = true,
[print] = true,
}
-- Return struct member size/type (requires LuaJIT 2.1+)
-- I am ashamed that there's no easier way around it.
local function sizeofattr(ct, name)
if not ffi.typeinfo then error('LuaJIT 2.1+ is required for ffi.typeinfo') end
local cinfo = ffi.typeinfo(ct)
while true do
cinfo = ffi.typeinfo(cinfo.sib)
if not cinfo then return end
if cinfo.name == name then break end
end
local size = math.max(1, ffi.typeinfo(cinfo.sib or ct).size - cinfo.size)
-- Guess type name
return size, builtins.width_type(size)
end
-- Return true if the constant part is a proxy
local function is_proxy(x)
return type(x) == 'table' and (x.__dissector or x.__map or x.__base)
end
-- Create compiler closure
local function create_emitter(env, stackslots, params, param_types)
local V = {} -- Variable tracking / register allocator
local code = { -- Generated code
pc = 0, bc_pc = 0,
insn = ffi.new('struct bpf_insn[4096]'),
fixup = {},
reachable = true,
seen_cmp = nil,
}
local Vstate = {} -- Track variable layout at basic block exits
-- Anything below this stack offset is free to use by caller
-- @note: There is no tracking memory allocator, so the caller may
-- lower it for persistent objects, but such memory will never
-- be reclaimed and the caller is responsible for resetting stack
-- top whenever the memory below is free to be reused
local stack_top = (stackslots + 1) * ffi.sizeof('uint64_t')
local function emit(op, dst, src, off, imm)
local ins = code.insn[code.pc]
ins.code = op
ins.dst_reg = dst
ins.src_reg = src
ins.off = off
ins.imm = imm
code.pc = code.pc + 1
end
local function reg_spill(var)
local vinfo = V[var]
vinfo.spill = (var + 1) * ffi.sizeof('uint64_t') -- Index by (variable number) * (register width)
emit(BPF.MEM + BPF.STX + BPF.DW, 10, vinfo.reg, -vinfo.spill, 0)
vinfo.reg = nil
end
local function reg_fill(var, reg)
local vinfo = V[var]
assert(vinfo.spill, 'attempt to fill register with a VAR that isn\'t spilled')
emit(BPF.MEM + BPF.LDX + BPF.DW, reg, 10, -vinfo.spill, 0)
vinfo.reg = reg
vinfo.spill = nil
end
-- Allocate a register (lazy simple allocator)
local function reg_alloc(var, reg)
-- Specific register requested, must spill/move existing variable
if reg then
for k,v in pairs(V) do -- Spill any variable that has this register
if v.reg == reg and not v.shadow then
reg_spill(k)
break
end
end
return reg
end
-- Find free or least recently used slot
local last, last_seen, used = nil, 0xffff, 0
for k,v in pairs(V) do
if v.reg then
if not v.live_to or v.live_to < last_seen then
last, last_seen = k, v.live_to or last_seen
end
used = bit.bor(used, bit.lshift(1, v.reg))
end
end
-- Attempt to select a free register from R7-R9 (callee saved)
local free = bit.bnot(used)
if bit.band(free, 0x80) ~= 0 then reg = 7
elseif bit.band(free,0x100) ~= 0 then reg = 8
elseif bit.band(free,0x200) ~= 0 then reg = 9
end
-- Select another variable to be spilled
if not reg then
assert(last)
reg = V[last].reg
reg_spill(last)
end
assert(reg, 'VAR '..var..'fill/spill failed')
return reg
end
-- Set new variable
local function vset(var, reg, const, vtype)
-- Must materialise all variables shadowing this variable slot, as it will be overwritten
if V[var] and V[var].reg then
for k, vinfo in pairs(V) do
-- Shadowing variable MUST share the same type and attributes,
-- but the register assignment may have changed
if vinfo.shadow == var then
vinfo.reg = V[var].reg
vinfo.shadow = nil
end
end
end
-- Get precise type for CDATA or attempt to narrow numeric constant
if not vtype and type(const) == 'cdata' then vtype = ffi.typeof(const) end
V[var] = {reg=reg, const=const, type=vtype}
end
-- Materialize (or register) a variable in a register
-- If the register is nil, then the a new register is assigned (if not already assigned)
local function vreg(var, reg, reserve, vtype)
local vinfo = V[var]
assert(vinfo, 'VAR '..var..' not registered')
vinfo.live_to = code.pc-1
if (vinfo.reg and not reg) and not vinfo.shadow then return vinfo.reg end
reg = reg_alloc(var, reg)
-- Materialize variable shadow copy
local src = vinfo
while src.shadow do src = V[src.shadow] end
if reserve then
-- No load to register occurs
elseif src.reg then
emit(BPF.ALU64 + BPF.MOV + BPF.X, reg, src.reg, 0, 0)
elseif src.spill then
vinfo.spill = src.spill
reg_fill(var, reg)
elseif src.const then
vtype = vtype or src.type
if type(src.const) == 'table' and src.const.__base then
-- Load pointer type
emit(BPF.ALU64 + BPF.MOV + BPF.X, reg, 10, 0, 0)
emit(BPF.ALU64 + BPF.ADD + BPF.K, reg, 0, 0, -src.const.__base)
elseif type(src.const) == 'table' and src.const.__dissector then
-- Load dissector offset (imm32), but keep the constant part (dissector proxy)
emit(BPF.ALU64 + BPF.MOV + BPF.K, reg, 0, 0, src.const.off or 0)
elseif vtype and ffi.sizeof(vtype) == 8 then
-- IMM64 must be done in two instructions with imm64 = (lo(imm32), hi(imm32))
emit(BPF.LD + BPF.DW, reg, 0, 0, ffi.cast('uint32_t', src.const))
emit(0, 0, 0, 0, ffi.cast('uint32_t', bit.rshift(bit.rshift(src.const, 16), 16)))
vinfo.const = nil -- The variable is live
else
emit(BPF.ALU64 + BPF.MOV + BPF.K, reg, 0, 0, src.const)
vinfo.const = nil -- The variable is live
end
else assert(false, 'VAR '..var..' has neither register nor constant value') end
vinfo.reg = reg
vinfo.shadow = nil
vinfo.live_from = code.pc-1
vinfo.type = vtype or vinfo.type
return reg
end
-- Copy variable
local function vcopy(dst, src)
if dst == src then return end
V[dst] = {reg=V[src].reg, const=V[src].const, shadow=src, source=V[src].source, type=V[src].type}
end
-- Dereference variable of pointer type
local function vderef(dst_reg, src_reg, vtype)
-- Dereference map pointers for primitive types
-- BPF doesn't allow pointer arithmetics, so use the entry value
local w = ffi.sizeof(vtype)
assert(const_width[w], 'NYI: sizeof('..tostring(vtype)..') not 1/2/4/8 bytes')
if dst_reg ~= src_reg then
emit(BPF.ALU64 + BPF.MOV + BPF.X, dst_reg, src_reg, 0, 0) -- dst = src
end
emit(BPF.JMP + BPF.JEQ + BPF.K, src_reg, 0, 1, 0) -- if (src != NULL)
emit(BPF.MEM + BPF.LDX + const_width[w], dst_reg, src_reg, 0, 0) -- dst = *src;
end
-- Allocate a space for variable
local function valloc(size, blank)
local base = stack_top
assert(stack_top + size < 512 * 1024, 'exceeded maximum stack size of 512kB')
stack_top = stack_top + size
-- Align to 8 byte boundary
stack_top = math.ceil(stack_top/8)*8
-- Current kernel version doesn't support ARG_PTR_TO_RAW_STACK
-- so we always need to have memory initialized, remove this when supported
if blank then
if type(blank) == 'string' then
local sp = 0
while sp < size do
-- TODO: no BPF_ST + BPF_DW instruction yet
local as_u32 = ffi.new('uint32_t [1]')
local sub = blank:sub(sp+1, sp+ffi.sizeof(as_u32))
ffi.copy(as_u32, sub, #sub)
emit(BPF.MEM + BPF.ST + BPF.W, 10, 0, -(stack_top-sp), as_u32[0])
sp = sp + ffi.sizeof(as_u32)
end
elseif type(blank) == 'boolean' then
reg_alloc(stackslots, 0)
emit(BPF.ALU64 + BPF.MOV + BPF.K, 0, 0, 0, 0)
for sp = base+8,stack_top,8 do
emit(BPF.MEM + BPF.STX + BPF.DW, 10, 0, -sp, 0)
end
else error('NYI: will with unknown type '..type(blank)) end
end
return stack_top
end
-- Emit compensation code at the end of basic block to unify variable set layout on all block exits
-- 1. we need to free registers by spilling
-- 2. fill registers to match other exits from this BB
local function bb_end(Vcomp)
for i,v in pairs(V) do
if Vcomp[i] and Vcomp[i].spill and not v.spill then
reg_spill(i)
end
end
for i,v in pairs(V) do
if Vcomp[i] and Vcomp[i].reg and not v.reg then
vreg(i, Vcomp[i].reg)
end
end
end
local function LD_ABS(dst, off, w)
local dst_reg = vreg(dst, 0, true, builtins.width_type(w)) -- Reserve R0
-- assert(w < 8, 'NYI: LD_ABS64 is not supported') -- IMM64 has two IMM32 insns fused together
emit(BPF.LD + BPF.ABS + const_width[w], dst_reg, 0, 0, off)
end
local function LD_IND(dst, src, w, off)
local src_reg = vreg(src) -- Must materialize first in case dst == src
local dst_reg = vreg(dst, 0, true, builtins.width_type(w)) -- Reserve R0
emit(BPF.LD + BPF.IND + const_width[w], dst_reg, src_reg, 0, off or 0)
end
local function LD_FIELD(a, d, w, imm)
if imm then
LD_ABS(a, imm, w)
else
LD_IND(a, d, w)
end
end
-- @note: This is specific now as it expects registers reserved
local function LD_IMM_X(dst_reg, src_type, imm, w)
if w == 8 then -- IMM64 must be done in two instructions with imm64 = (lo(imm32), hi(imm32))
emit(BPF.LD + const_width[w], dst_reg, src_type, 0, ffi.cast('uint32_t', imm))
-- Must shift in two steps as bit.lshift supports [0..31]
emit(0, 0, 0, 0, ffi.cast('uint32_t', bit.lshift(bit.lshift(imm, 16), 16)))
else
emit(BPF.LD + const_width[w], dst_reg, src_type, 0, imm)
end
end
local function LOAD(dst, src, off, vtype)
local base = V[src].const
assert(base.__dissector, 'NYI: load() on variable that doesnt have dissector')
-- Cast to different type if requested
vtype = vtype or base.__dissector
local w = ffi.sizeof(vtype)
assert(w <= 4, 'NYI: load() supports 1/2/4 bytes at a time only')
if base.off then -- Absolute address to payload
LD_ABS(dst, off + base.off, w)
else -- Indirect address to payload
LD_IND(dst, src, w, off)
end
V[dst].type = vtype
V[dst].const = nil -- Dissected value is not constant anymore
end
local function CMP_STR(a, b, op)
assert(op == 'JEQ' or op == 'JNE', 'NYI: only equivallence stack/string only supports == or ~=')
-- I have no better idea how to implement it than unrolled XOR loop, as we can fixup only one JMP
-- So: X(a,b) = a[0] ^ b[0] | a[1] ^ b[1] | ...
-- EQ(a,b) <=> X == 0
-- This could be optimised by placing early exits by rewriter in second phase for long strings
local base, size = V[a].const.__base, math.min(#b, ffi.sizeof(V[a].type))
local acc, tmp = reg_alloc(stackslots, 0), reg_alloc(stackslots+1, 1)
local sp = 0
emit(BPF.ALU64 + BPF.MOV + BPF.K, acc, 0, 0, 0)
while sp < size do
-- Load string chunk as imm32
local as_u32 = ffi.new('uint32_t [1]')
local sub = b:sub(sp+1, sp+ffi.sizeof(as_u32))
ffi.copy(as_u32, sub, #sub)
-- TODO: make this faster by interleaved load/compare steps with DW length
emit(BPF.MEM + BPF.LDX + BPF.W, tmp, 10, -(base-sp), 0)
emit(BPF.ALU64 + BPF.XOR + BPF.K, tmp, 0, 0, as_u32[0])
emit(BPF.ALU64 + BPF.OR + BPF.X, acc, tmp, 0, 0)
sp = sp + ffi.sizeof(as_u32)
end
emit(BPF.JMP + BPF[op] + BPF.K, acc, 0, 0xffff, 0)
code.seen_cmp = code.pc-1
end
local function CMP_REG(a, b, op)
-- Fold compile-time expressions
if V[a].const and V[b].const and not (is_proxy(V[a].const) or is_proxy(V[b].const)) then
code.seen_cmp = const_expr[op](V[a].const, V[b].const) and ALWAYS or NEVER
else
-- Comparison against compile-time string or stack memory
if V[b].const and type(V[b].const) == 'string' then
return CMP_STR(a, V[b].const, op)
end
-- The 0xFFFF target here has no significance, it's just a placeholder for
-- compiler to replace it's absolute offset to LJ bytecode insn with a relative
-- offset in BPF program code, verifier will accept only programs with valid JMP targets
local a_reg, b_reg = vreg(a), vreg(b)
-- Migrate operands from R0-5 as it will be spilled in compensation code when JMP out of BB
if a_reg == 0 then a_reg = vreg(a, 7) end
emit(BPF.JMP + BPF[op] + BPF.X, a_reg, b_reg, 0xffff, 0)
code.seen_cmp = code.pc-1
end
end
local function CMP_IMM(a, b, op)
if V[a].const and not is_proxy(V[a].const) then -- Fold compile-time expressions
code.seen_cmp = const_expr[op](V[a].const, b) and ALWAYS or NEVER
else
-- Convert imm32 to number
if type(b) == 'string' then
if #b == 1 then b = b:byte()
elseif cdef.isptr(V[a].type) then
-- String comparison between stack/constant string
return CMP_STR(a, b, op)
elseif #b <= 4 then
-- Convert to u32 with network byte order
local imm = ffi.new('uint32_t[1]')
ffi.copy(imm, b, #b)
b = builtins.hton(imm[0])
else error('NYI: compare register with string, where #string > sizeof(u32)') end
end
-- The 0xFFFF target here has no significance, it's just a placeholder for
-- compiler to replace it's absolute offset to LJ bytecode insn with a relative
-- offset in BPF program code, verifier will accept only programs with valid JMP targets
local reg = vreg(a)
-- Migrate operands from R0-5 as it will be spilled in compensation code when JMP out of BB
if reg == 0 then reg = vreg(a, 7) end
emit(BPF.JMP + BPF[op] + BPF.K, reg, 0, 0xffff, b)
code.seen_cmp = code.pc-1
end
end
local function ALU_IMM(dst, a, b, op)
-- Fold compile-time expressions
if V[a].const and not is_proxy(V[a].const) then
assert(type(V[a].const) == 'number', 'VAR '..a..' must be numeric')
vset(dst, nil, const_expr[op](V[a].const, b))
-- Now we need to materialize dissected value at DST, and add it
else
vcopy(dst, a)
local dst_reg = vreg(dst)
if cdef.isptr(V[a].type) then
vderef(dst_reg, dst_reg, V[a].const.__dissector)
V[dst].type = V[a].const.__dissector
else
V[dst].type = V[a].type
end
emit(BPF.ALU64 + BPF[op] + BPF.K, dst_reg, 0, 0, b)
end
end
local function ALU_REG(dst, a, b, op)
-- Fold compile-time expressions
if V[a].const and not (is_proxy(V[a].const) or is_proxy(V[b].const)) then
assert(type(V[a].const) == 'number', 'VAR '..a..' must be numeric')
assert(type(V[b].const) == 'number', 'VAR '..b..' must be numeric')
if type(op) == 'string' then op = const_expr[op] end
vcopy(dst, a)
V[dst].const = op(V[a].const, V[b].const)
else
local src_reg = b and vreg(b) or 0 -- SRC is optional for unary operations
if b and cdef.isptr(V[b].type) then
-- We have to allocate a temporary register for dereferencing to preserve
-- pointer in source variable that MUST NOT be altered
reg_alloc(stackslots, 2)
vderef(2, src_reg, V[b].const.__dissector)
src_reg = 2
end
vcopy(dst, a) -- DST may alias B, so copy must occur after we materialize B
local dst_reg = vreg(dst)
if cdef.isptr(V[a].type) then
vderef(dst_reg, dst_reg, V[a].const.__dissector)
V[dst].type = V[a].const.__dissector
end
emit(BPF.ALU64 + BPF[op] + BPF.X, dst_reg, src_reg, 0, 0)
V[stackslots].reg = nil -- Free temporary registers
end
end
local function ALU_IMM_NV(dst, a, b, op)
-- Do DST = IMM(a) op VAR(b) where we can't invert because
-- the registers are u64 but immediates are u32, so complement
-- arithmetics wouldn't work
vset(stackslots+1, nil, a)
ALU_REG(dst, stackslots+1, b, op)
end
local function BUILTIN(func, ...)
local builtin_export = {
-- Compiler primitives (work with variable slots, emit instructions)
V=V, vreg=vreg, vset=vset, vcopy=vcopy, vderef=vderef, valloc=valloc, emit=emit,
reg_alloc=reg_alloc, reg_spill=reg_spill, tmpvar=stackslots, const_width=const_width,
-- Extensions and helpers (use with care)
LD_IMM_X = LD_IMM_X,
}
func(builtin_export, ...)
end
local function CALL(a, b, d)
assert(b-1 <= 1, 'NYI: CALL with >1 return values')
-- Perform either compile-time, helper, or builtin
local func = V[a].const
-- Gather all arguments and check if they're constant
local args, const, nargs = {}, true, d - 1
for i = a+1, a+d-1 do
table.insert(args, V[i].const)
if not V[i].const or is_proxy(V[i].const) then const = false end
end
local builtin = builtins[func]
if not const or nargs == 0 then
if builtin and type(builtin) == 'function' then
args = {a}
for i = a+1, a+nargs do table.insert(args, i) end
BUILTIN(builtin, unpack(args))
elseif V[a+2] and V[a+2].const then -- var OP imm
ALU_IMM(a, a+1, V[a+2].const, builtin)
elseif nargs <= 2 then -- var OP var
ALU_REG(a, a+1, V[a+2] and a+2, builtin)
else
error('NYI: CALL non-builtin with 3 or more arguments')
end
-- Call on dissector implies slice retrieval
elseif type(func) == 'table' and func.__dissector then
assert(nargs >= 2, 'NYI: <dissector>.slice(a, b) must have at least two arguments')
assert(V[a+1].const and V[a+2].const, 'NYI: slice() arguments must be constant')
local off = V[a+1].const
local vtype = builtins.width_type(V[a+2].const - off)
LOAD(a, a, off, vtype)
-- Strict builtins cannot be expanded on compile-time
elseif builtins_strict[func] and builtin then
args = {a}
for i = a+1, a+nargs do table.insert(args, i) end
BUILTIN(builtin, unpack(args))
-- Attempt compile-time call expansion (expects all argument compile-time known)
else
V[a].const = func(unpack(args))
end
end
local function MAP_INIT(map_var, key, imm)
local map = V[map_var].const
vreg(map_var, 1, true, ffi.typeof('uint64_t'))
-- Reserve R1 and load ptr for process-local map fd
LD_IMM_X(1, BPF.PSEUDO_MAP_FD, map.fd, ffi.sizeof(V[map_var].type))
V[map_var].reg = nil -- R1 will be invalidated after CALL, forget register allocation
-- Reserve R2 and load R2 = key pointer
local key_size = ffi.sizeof(map.key_type)
local w = const_width[key_size] or BPF.DW
local pod_type = const_width[key_size]
local sp = stack_top + key_size -- Must use stack below spill slots
-- Store immediate value on stack
reg_alloc(stackslots, 2) -- Spill anything in R2 (unnamed tmp variable)
local key_base = key and V[key].const
imm = imm or key_base
if imm and (not key or not is_proxy(key_base)) then
assert(pod_type, 'NYI: map[const K], K width must be 1/2/4/8')
emit(BPF.MEM + BPF.ST + w, 10, 0, -sp, imm)
-- Key is in register, spill it
elseif V[key].reg and pod_type then
if cdef.isptr(V[key].type) then
-- There is already pointer in register, dereference before spilling
emit(BPF.MEM + BPF.LDX + w, 2, V[key].reg, 0, 0)
emit(BPF.MEM + BPF.STX + w, 10, 2, -sp, 0)
else -- Variable in register is POD, spill it on the stack
emit(BPF.MEM + BPF.STX + w, 10, V[key].reg, -sp, 0)
end
-- Key is spilled from register to stack
elseif V[key].spill then
sp = V[key].spill
-- Key is already on stack, write to base-relative address
elseif key_base.__base then
assert(key_size == ffi.sizeof(V[key].type), 'VAR '..key..' type incompatible with BPF map key type')
sp = key_base.__base
else
error('VAR '..key..' is neither const-expr/register/stack/spilled')
end
-- If [FP+K] addressing, emit it
if sp then
emit(BPF.ALU64 + BPF.MOV + BPF.X, 2, 10, 0, 0)
emit(BPF.ALU64 + BPF.ADD + BPF.K, 2, 0, 0, -sp)
end
end
local function MAP_GET(dst, map_var, key, imm)
local map = V[map_var].const
MAP_INIT(map_var, key, imm)
-- Flag as pointer type and associate dissector for map value type
vreg(dst, 0, true, ffi.typeof('uint8_t *'))
V[dst].const = {__dissector=map.val_type}
emit(BPF.JMP + BPF.CALL, 0, 0, 0, HELPER.map_lookup_elem)
V[stackslots].reg = nil -- Free temporary registers
end
local function MAP_DEL(map_var, key, key_imm)
-- Set R0, R1 (map fd, preempt R0)
reg_alloc(stackslots, 0) -- Spill anything in R0 (unnamed tmp variable)
MAP_INIT(map_var, key, key_imm)
emit(BPF.JMP + BPF.CALL, 0, 0, 0, HELPER.map_delete_elem)
V[stackslots].reg = nil -- Free temporary registers
end
local function MAP_SET(map_var, key, key_imm, src)
local map = V[map_var].const
-- Delete when setting nil
if V[src].type == ffi.typeof('void') then
return MAP_DEL(map_var, key, key_imm)
end
-- Set R0, R1 (map fd, preempt R0)
reg_alloc(stackslots, 0) -- Spill anything in R0 (unnamed tmp variable)
MAP_INIT(map_var, key, key_imm)
reg_alloc(stackslots, 4) -- Spill anything in R4 (unnamed tmp variable)
emit(BPF.ALU64 + BPF.MOV + BPF.K, 4, 0, 0, 0) -- BPF_ANY, create new element or update existing
-- Reserve R3 for value pointer
local val_size = ffi.sizeof(map.val_type)
local w = const_width[val_size] or BPF.DW
local pod_type = const_width[val_size]
-- Stack pointer must be aligned to both key/value size and have enough headroom for (key, value)
local sp = stack_top + ffi.sizeof(map.key_type) + val_size
sp = sp + (sp % val_size)
local base = V[src].const
if base and not is_proxy(base) then
assert(pod_type, 'NYI: MAP[K] = imm V; V width must be 1/2/4/8')
emit(BPF.MEM + BPF.ST + w, 10, 0, -sp, base)
-- Value is in register, spill it
elseif V[src].reg and pod_type then
emit(BPF.MEM + BPF.STX + w, 10, V[src].reg, -sp, 0)
-- We get a pointer to spilled register on stack
elseif V[src].spill then
-- If variable is a pointer, we can load it to R3 directly (save "LEA")
if cdef.isptr(V[src].type) then
reg_fill(src, 3)
emit(BPF.JMP + BPF.CALL, 0, 0, 0, HELPER.map_update_elem)
return
else
sp = V[src].spill
end
-- Value is already on stack, write to base-relative address
elseif base.__base then
assert(val_size == ffi.sizeof(V[key].type), 'VAR '..key..' type incompatible with BPF map value type')
sp = key_base.__base
-- Value is constant, materialize it on stack
else
error('VAR '..key..' is neither const-expr/register/stack/spilled')
end
reg_alloc(stackslots, 3) -- Spill anything in R3 (unnamed tmp variable)
emit(BPF.ALU64 + BPF.MOV + BPF.X, 3, 10, 0, 0)
emit(BPF.ALU64 + BPF.ADD + BPF.K, 3, 0, 0, -sp)
emit(BPF.JMP + BPF.CALL, 0, 0, 0, HELPER.map_update_elem)
V[stackslots].reg = nil -- Free temporary registers
end
-- Finally - this table translates LuaJIT bytecode into code emitter actions.
local BC = {
-- Constants
KNUM = function(a, _, c, _) -- KNUM
vset(a, nil, c, ffi.typeof('int32_t')) -- TODO: only 32bit immediates are supported now
end,
KSHORT = function(a, _, _, d) -- KSHORT
vset(a, nil, d, ffi.typeof('int16_t'))
end,
KPRI = function(a, _, _, d) -- KPRI
-- KNIL is 0, must create a special type to identify it
local vtype = (d < 1) and ffi.typeof('void') or ffi.typeof('uint8_t')
vset(a, nil, (d < 2) and 0 or 1, vtype)
end,
KSTR = function(a, _, c, _) -- KSTR
vset(a, nil, c, ffi.typeof('const char[?]'))
end,
MOV = function(a, _, _, d) -- MOV var, var
vcopy(a, d)
end,
-- Comparison ops
-- Note: comparisons are always followed by JMP opcode, that
-- will fuse following JMP to JMP+CMP instruction in BPF
-- Note: we're narrowed to integers, so operand/operator inversion is legit
ISLT = function(a, _, _, d) return CMP_REG(d, a, 'JGE') end, -- (a < d) (inverted)
ISGE = function(a, _, _, d) return CMP_REG(a, d, 'JGE') end, -- (a >= d)
ISGT = function(a, _, _, d) return CMP_REG(a, d, 'JGT') end, -- (a > d)
ISEQV = function(a, _, _, d) return CMP_REG(a, d, 'JEQ') end, -- (a == d)
ISNEV = function(a, _, _, d) return CMP_REG(a, d, 'JNE') end, -- (a ~= d)
ISEQS = function(a, _, c, _) return CMP_IMM(a, c, 'JEQ') end, -- (a == str(c))
ISNES = function(a, _, c, _) return CMP_IMM(a, c, 'JNE') end, -- (a ~= str(c))
ISEQN = function(a, _, c, _) return CMP_IMM(a, c, 'JEQ') end, -- (a == c)
ISNEN = function(a, _, c, _) return CMP_IMM(a, c, 'JNE') end, -- (a ~= c)
IST = function(_, _, _, d) return CMP_IMM(d, 0, 'JNE') end, -- (d)
ISF = function(_, _, _, d) return CMP_IMM(d, 0, 'JEQ') end, -- (not d)
ISEQP = function(a, _, c, _) return CMP_IMM(a, c, 'JEQ') end, -- ISEQP (a == c)
-- Binary operations with RHS constants
ADDVN = function(a, b, c, _) return ALU_IMM(a, b, c, 'ADD') end,
SUBVN = function(a, b, c, _) return ALU_IMM(a, b, c, 'SUB') end,
MULVN = function(a, b, c, _) return ALU_IMM(a, b, c, 'MUL') end,
DIVVN = function(a, b, c, _) return ALU_IMM(a, b, c, 'DIV') end,
MODVN = function(a, b, c, _) return ALU_IMM(a, b, c, 'MOD') end,
-- Binary operations with LHS constants
-- Cheat code: we're narrowed to integer arithmetic, so MUL+ADD are commutative
ADDNV = function(a, b, c, _) return ALU_IMM(a, b, c, 'ADD') end, -- ADDNV
MULNV = function(a, b, c, _) return ALU_IMM(a, b, c, 'MUL') end, -- MULNV
SUBNV = function(a, b, c, _) return ALU_IMM_NV(a, c, b, 'SUB') end, -- SUBNV
DIVNV = function(a, b, c, _) return ALU_IMM_NV(a, c, b, 'DIV') end, -- DIVNV
-- Binary operations between registers
ADDVV = function(a, b, _, d) return ALU_REG(a, b, d, 'ADD') end,
SUBVV = function(a, b, _, d) return ALU_REG(a, b, d, 'SUB') end,
MULVV = function(a, b, _, d) return ALU_REG(a, b, d, 'MUL') end,
DIVVV = function(a, b, _, d) return ALU_REG(a, b, d, 'DIV') end,
MODVV = function(a, b, _, d) return ALU_REG(a, b, d, 'MOD') end,
-- Strings
CAT = function(a, b, _, d) -- CAT A = B ~ D
assert(V[b].const and V[d].const, 'NYI: CAT only works on compile-time expressions')
assert(type(V[b].const) == 'string' and type(V[d].const) == 'string',
'NYI: CAT only works on compile-time strings')
vset(a, nil, V[b].const .. V[d].const)
end,
-- Tables
GGET = function (a, _, c, _) -- GGET (A = GLOBAL[c])
if env[c] ~= nil then
vset(a, nil, env[c])
else error(string.format("undefined global '%s'", c)) end
end,
UGET = function (a, _, c, _) -- UGET (A = UPVALUE[c])
if env[c] ~= nil then
vset(a, nil, env[c])
else error(string.format("undefined upvalue '%s'", c)) end
end,
TGETB = function (a, b, _, d) -- TGETB (A = B[D])
if a ~= b then vset(a) end
local base = V[b].const
if base.__map then -- BPF map read (constant)
MAP_GET(a, b, nil, d)
else
LOAD(a, b, d, ffi.typeof('uint8_t'))
end
end,
TSETB = function (a, b, _, d) -- TSETB (B[D] = A)
if V[b].const.__map then -- BPF map read (constant)
return MAP_SET(b, nil, d, a) -- D is literal
elseif V[b].const and V[b].const and V[a].const then
V[b].const[V[d].const] = V[a].const
else error('NYI: B[D] = A, where B is not Lua table or BPF map')
end
end,
TSETV = function (a, b, _, d) -- TSETV (B[D] = A)
if V[b].const.__map then -- BPF map read (constant)
return MAP_SET(b, d, nil, a) -- D is variable
elseif V[b].const and V[d].const and V[a].const then
V[b].const[V[d].const] = V[a].const
else error('NYI: B[D] = A, where B is not Lua table or BPF map')
end
end,
TSETS = function (a, b, c, _) -- TSETS (B[C] = A)
assert(V[b] and V[b].const, 'NYI: B[D] where B is not Lua table or BPF map')
local base = V[b].const
if base.__dissector then
local ofs,bpos,bsize = ffi.offsetof(base.__dissector, c)
assert(not bpos, 'NYI: B[C] = A, where C is a bitfield')
local w = sizeofattr(base.__dissector, c)
-- TODO: support vectorized moves larger than register width
assert(const_width[w], 'B[C] = A, sizeof(A) must be 1/2/4/8')
local src_reg = vreg(a)
-- If source is a pointer, we must dereference it first
if cdef.isptr(V[a].type) then
local tmp_reg = reg_alloc(stackslots, 1) -- Clone variable in tmp register
emit(BPF.ALU64 + BPF.MOV + BPF.X, tmp_reg, src_reg, 0, 0)
vderef(tmp_reg, tmp_reg, V[a].const.__dissector)
src_reg = tmp_reg -- Materialize and dereference it
-- Source is a value on stack, we must load it first
elseif V[a].const and V[a].const.__base > 0 then
emit(BPF.MEM + BPF.LDX + const_width[w], src_reg, 10, -V[a].const.__base, 0)
V[a].type = V[a].const.__dissector
V[a].const = nil -- Value is dereferenced
end
-- If the table is not on stack, it must be checked for NULL
if not base.__base then
emit(BPF.JMP + BPF.JEQ + BPF.K, V[b].reg, 0, 1, 0) -- if (map[x] != NULL)
emit(BPF.MEM + BPF.STX + const_width[w], V[b].reg, src_reg, ofs, 0)
else -- Table is already on stack, write to base-relative address
emit(BPF.MEM + BPF.STX + const_width[w], 10, src_reg, -base.__base + ofs, 0)
end
elseif V[a].const then
base[c] = V[a].const
else error('NYI: B[C] = A, where B is not Lua table or BPF map')
end
end,
TGETV = function (a, b, _, d) -- TGETV (A = B[D])
assert(V[b] and V[b].const, 'NYI: B[D] where B is not Lua table or BPF map')
if a ~= b then vset(a) end
if V[b].const.__map then -- BPF map read
MAP_GET(a, b, d)
elseif V[b].const == env.pkt then -- Raw packet, no offset
LD_FIELD(a, d, 1, V[d].const)
else V[a].const = V[b].const[V[d].const] end
end,
TGETS = function (a, b, c, _) -- TGETS (A = B[C])
assert(V[b] and V[b].const, 'NYI: B[C] where C is string and B not Lua table or BPF map')
local base = V[b].const
if type(base) == 'table' and base.__dissector then
local ofs,bpos,bsize = ffi.offsetof(base.__dissector, c)
-- Resolve table key using metatable
if not ofs and type(base.__dissector[c]) == 'string' then
c = base.__dissector[c]
ofs,bpos,bsize = ffi.offsetof(base.__dissector, c)
end
if not ofs and proto[c] then -- Load new dissector on given offset
BUILTIN(proto[c], a, b, c)
else
assert(ofs, tostring(base.__dissector)..'.'..c..' attribute not exists')
if a ~= b then vset(a) end
-- Dissected value is probably not constant anymore
local new_const = nil
-- Simple register load, get absolute offset or R-relative
local w, atype = sizeofattr(base.__dissector, c)
if base.__base == true then -- R-relative addressing
local dst_reg = vreg(a, nil, true)
assert(const_width[w], 'NYI: sizeof('..tostring(base.__dissector)..'.'..c..') not 1/2/4/8 bytes')
emit(BPF.MEM + BPF.LDX + const_width[w], dst_reg, V[b].reg, ofs, 0)
elseif not base.source and base.__base and base.__base > 0 then -- [FP+K] addressing
if cdef.isptr(atype) then -- If the member is pointer type, update base pointer with offset
new_const = {__base = base.__base-ofs}
else
local dst_reg = vreg(a, nil, true)
emit(BPF.MEM + BPF.LDX + const_width[w], dst_reg, 10, -base.__base+ofs, 0)
end
elseif base.off then -- Absolute address to payload
LD_ABS(a, ofs + base.off, w)
elseif base.source == 'probe' then -- Indirect read using probe
BUILTIN(builtins[builtins.probe_read], nil, a, b, atype, ofs)
V[a].source = V[b].source -- Builtin handles everything
return
else -- Indirect address to payload
LD_IND(a, b, w, ofs)
end
-- Bitfield, must be further narrowed with a bitmask/shift
if bpos then
local mask = 0
for i=bpos+1,bpos+bsize do
mask = bit.bor(mask, bit.lshift(1, w*8-i))
end
emit(BPF.ALU64 + BPF.AND + BPF.K, vreg(a), 0, 0, mask)
-- Free optimization: single-bit values need just boolean result
if bsize > 1 then
local shift = w*8-bsize-bpos
if shift > 0 then
emit(BPF.ALU64 + BPF.RSH + BPF.K, vreg(a), 0, 0, shift)
end
end
end
V[a].type = atype
V[a].const = new_const
V[a].source = V[b].source
end
else V[a].const = base[c] end
end,
-- Loops and branches
CALLM = function (a, b, _, d) -- A = A(A+1, ..., A+D+MULTRES)
-- NYI: Support single result only
CALL(a, b, d+2)
end,
CALL = function (a, b, _, d) -- A = A(A+1, ..., A+D-1)
CALL(a, b, d)
end,
JMP = function (a, _, c, d) -- JMP
-- Discard unused slots after jump
for i, _ in pairs(V) do
if i >= a then V[i] = {} end
end
local val = code.fixup[c] or {}
if code.seen_cmp and code.seen_cmp ~= ALWAYS then
if code.seen_cmp ~= NEVER then -- Do not emit the jump or fixup
-- Store previous CMP insn for reemitting after compensation code
local jmpi = ffi.new('struct bpf_insn', code.insn[code.pc-1])
code.pc = code.pc - 1
-- First branch point, emit compensation code
local Vcomp = Vstate[c]
if not Vcomp then
for i,v in pairs(V) do
if not v.reg and v.const and not is_proxy(v.const) then
vreg(i, 0) -- Load to TMP register (not saved)
end
if v.reg and v.reg <= 5 then
reg_spill(i) -- Spill caller-saved registers
end
end
-- Record variable state
Vstate[c] = V
V = {}
for i,v in pairs(Vstate[c]) do
V[i] = {}
for k,e in pairs(v) do
V[i][k] = e
end
end
-- Variable state already set, emit specific compensation code
else bb_end(Vcomp) end
-- Reemit CMP insn
emit(jmpi.code, jmpi.dst_reg, jmpi.src_reg, jmpi.off, jmpi.imm)
-- Fuse JMP into previous CMP opcode, mark JMP target for fixup
-- as we don't knot the relative offset in generated code yet
table.insert(val, code.pc-1)
code.fixup[c] = val
end
code.seen_cmp = nil
else
emit(BPF.JMP + BPF.JEQ + BPF.X, 6, 6, 0xffff, 0) -- Always true
table.insert(val, code.pc-1) -- Fixup JMP target
code.reachable = false -- Code following the JMP is not reachable
code.fixup[c] = val
end
end,
RET1 = function (a, _, _, _) -- RET1
if V[a].reg ~= 0 then vreg(a, 0) end
emit(BPF.JMP + BPF.EXIT, 0, 0, 0, 0)
-- Free optimisation: spilled variable will not be filled again
for _,v in pairs(V) do if v.reg == 0 then v.reg = nil end end
code.reachable = false
end,
RET0 = function (_, _, _, _) -- RET0
emit(BPF.ALU64 + BPF.MOV + BPF.K, 0, 0, 0, 0)
emit(BPF.JMP + BPF.EXIT, 0, 0, 0, 0)
code.reachable = false
end,
compile = function ()
return code
end
}
-- Always initialize R6 with R1 context
emit(BPF.ALU64 + BPF.MOV + BPF.X, 6, 1, 0, 0)
-- Register R6 as context variable (first argument)
if params and params > 0 then
vset(0, 6, param_types[1] or proto.skb)
end
-- Register tmpvars
vset(stackslots)
vset(stackslots+1)
return setmetatable(BC, {
__index = function (t, k, v)
if type(k) == 'number' then
local op_str = string.sub(require('jit.vmdef').bcnames, 6*k+1, 6*k+6)
error(string.format("NYI: opcode '0x%02x' (%-04s)", k, op_str))
end
end,
__call = function (t, op, a, b, c, d)
code.bc_pc = code.bc_pc + 1
-- Exitting BB straight through, emit compensation code
if Vstate[code.bc_pc] and code.reachable then
bb_end(Vstate[code.bc_pc])
end
-- Perform fixup of jump targets
-- We need to do this because the number of consumed and emited
-- bytecode instructions is different
local fixup = code.fixup[code.bc_pc]
if fixup ~= nil then
-- Patch JMP source insn with relative offset
for _,pc in ipairs(fixup) do
code.insn[pc].off = code.pc - 1 - pc
end
code.fixup[code.bc_pc] = nil
code.reachable = true
end
-- Execute
if code.reachable then
assert(t[op], string.format('NYI: instruction %s, parameters: %s,%s,%s,%s', op,a,b,c,d))
return t[op](a, b, c, d)
end
end,
})
end
-- Emitted code dump
local function dump_mem(cls, ins)
local mode = bit.band(ins.code, 0xe0)
if mode == BPF.XADD then cls = 5 end -- The only mode
local op_1 = {'LD', 'LDX', 'ST', 'STX', '', 'XADD'}
local op_2 = {[0]='W', [8]='H', [16]='B', [24]='DW'}
local name = op_1[cls+1] .. op_2[bit.band(ins.code, 0x18)]
local off = tonumber(ffi.cast('int16_t', ins.off)) -- Reinterpret as signed
local dst = cls < 2 and 'R'..ins.dst_reg or string.format('[R%d%+d]', ins.dst_reg, off)
local src = cls % 2 == 0 and '#'..ins.imm or 'R'..ins.src_reg
if cls == BPF.LDX then src = string.format('[R%d%+d]', ins.src_reg, off) end
if mode == BPF.ABS then src = string.format('[%d]', ins.imm) end
if mode == BPF.IND then src = string.format('[R%d%+d]', ins.src_reg, ins.imm) end
return string.format('%s\t%s\t%s', name, dst, src)
end
local function dump_alu(cls, ins, pc)
local alu = {'ADD', 'SUB', 'MUL', 'DIV', 'OR', 'AND', 'LSH', 'RSH', 'NEG', 'MOD', 'XOR', 'MOV', 'ARSH', 'END' }
local jmp = {'JA', 'JEQ', 'JGT', 'JGE', 'JSET', 'JNE', 'JSGT', 'JSGE', 'CALL', 'EXIT'}
local helper = {'unspec', 'map_lookup_elem', 'map_update_elem', 'map_delete_elem', 'probe_read', 'ktime_get_ns',
'trace_printk', 'get_prandom_u32', 'get_smp_processor_id', 'skb_store_bytes',
'l3_csum_replace', 'l4_csum_replace', 'tail_call', 'clone_redirect', 'get_current_pid_tgid',
'get_current_uid_gid', 'get_current_comm', 'get_cgroup_classid', 'skb_vlan_push', 'skb_vlan_pop',
'skb_get_tunnel_key', 'skb_set_tunnel_key', 'perf_event_read', 'redirect', 'get_route_realm',
'perf_event_output', 'skb_load_bytes'}
local op = 0
for i = 0,13 do if 0x10 * i == bit.band(ins.code, 0xf0) then op = i + 1 break end end
local name = (cls == 5) and jmp[op] or alu[op]
local src = (bit.band(ins.code, 0x08) == BPF.X) and 'R'..ins.src_reg or '#'..ins.imm
local target = (cls == 5 and op < 9) and string.format('\t=> %04d', pc + ins.off + 1) or ''
if cls == 5 and op == 9 then target = string.format('\t; %s', helper[ins.imm + 1] or tostring(ins.imm)) end
return string.format('%s\t%s\t%s%s', name, 'R'..ins.dst_reg, src, target)
end
local function dump(code)
if not code then return end
print(string.format('-- BPF %s:0-%u', code.insn, code.pc))
local cls_map = {
[0] = dump_mem, [1] = dump_mem, [2] = dump_mem, [3] = dump_mem,
[4] = dump_alu, [5] = dump_alu, [7] = dump_alu,
}
for i = 0, code.pc - 1 do
local ins = code.insn[i]
local cls = bit.band(ins.code, 0x07)
print(string.format('%04u\t%s', i, cls_map[cls](cls, ins, i)))
end
end
local function compile(prog, params)
-- Create code emitter sandbox, include caller locals
local env = { pkt=proto.pkt, BPF=BPF }
-- Include upvalues up to 4 nested scopes back
-- the narrower scope overrides broader scope
for k = 5, 2, -1 do
local i = 1
while true do
local ok, n, v = pcall(debug.getlocal, k, i)
if not ok or not n then break end
env[n] = v
i = i + 1
end