-
Notifications
You must be signed in to change notification settings - Fork 4
/
T_Passman.tex
494 lines (427 loc) · 15.6 KB
/
T_Passman.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
\section{Project: Passman's theorem}
\label{section:Passman}
% We now describe some other well-known problems
% in the theory of group rings.
\index{Trivial units in group algebras}
Let $K$ be a field and $G$ be a group. A unit $u\in K[G]$ is said
to be \emph{trivial} if $u=\lambda g$ for some $\lambda\in K\setminus\{0\}$ an
d
$g\in G$.
\begin{exercise}
\label{xca:non_trivial:C2andC5}
Prove that $\C[C_2]$ and $\C[C_5]$ have non-trivial units.
\end{exercise}
The following question is usually attributed to Kaplansky.
\begin{question}[Units in groups algebras]
\label{question:units}
Let $K$ be a field and $G$ be a torsion-free group. Is it true that all
units of $K[G]$ are
trivial?
\end{question}
Question \ref{question:units} was negatively answered by Gardam.
\begin{theorem}[Gardam]
\label{thm:Gardam_char2}
\index{Gardam's theorem}
Let $\F_2$ be the field of two elements. Consider the elements
$x=a^2$, $y=b^2$ and $z=(ab)^2$ of $P$ and let
\begin{align*}
&p=(1+x)(1+y)(1+z^{-1}),
&&q = x^{-1}y^{-1}+x+y^{-1}z+z,\\
&r = 1+x+y^{-1}z+xyz,
&&s=1+(x+x^{-1}+y+y^{-1})z^{-1}.
\end{align*}
Then $u=p+qa+rb+sab$ is a non-trivial unit in $\F_2[P]$.
\end{theorem}
\begin{proof}
See \cite{MR4334981}.
\end{proof}
\begin{definition}
\index{Ring!reduced}
A ring $R$ is \emph{reduced} if for all $r\in R$ such that
$r^2=0$ one has $r=0$.
\end{definition}
Integral domains and boolean rings are reduced. The ring $\Z/8$ of integers
modulo eight
and $M_2(\R)$ are not reduced.
\begin{example}
The ring over the abelian group $\Z^n$ with multiplication \[
(a_1,\dots,a_n)(b_1,\dots,b_n)=(a_1b_1,\dots,a_nb_n)\]
is reduced.
\end{example}
The structure of
reduced rings is described by the
Andrunakevic--Rjabuhin theorem. It states
that a ring is reduced if and only if
it is a subdirect products of domains. See
\cite[3.20.5]{MR2015465} for a proof.
\begin{question}[Reduced group algebras]
\label{question:reduced}
Let $K$ be a field and $G$ be a torsion-free group. Is it true that
$K[G]$ is reduced?
\end{question}
Recall that if $R$ is a unitary ring, one proves that
the Jacobson radical $J(R)$ is
the set of elements $x$ such that
$1+\sum_{i=1}^n r_ixs_i$ is invertible
for all $n$ and all $r_i,s_i\in R$.
\begin{question}[Semisimple group algebras]
\label{question:J}
Let $K$ be a field and $G$ be a torsion-free group. It is true that
$J(K[G])=\{0\}$ if $G$ is non-trivial?
\end{question}
\index{Idempotent}
Recall that an element $e$ of a ring is said to be \emph{idempotent}
if $e^2=e$. Examples of idempotents are $0$ and $1$ and
these are known as the \emph{trivial idempotents}.
\begin{question}[Idempotents in group algebras]
\label{question:idempotente}
Let $G$ be a torsion-free group and $\alpha\in K[G]$ be an idempotent.
Is it true that $\alpha\in\{0,1\}$?
\end{question}
\begin{exercise}
Prove that if $K[G]$ has no zero-divisors and $\alpha\in K[G]$ is an
idempotent, then $\alpha\in\{0,1\}$.
\end{exercise}
\begin{exercise}
Let $K$ be a field of characteristic two.
Prove that $K[C_4]$ contains non-trivial zero divisors and every
idempotent of $K[C_4]$ is trivial. What happens if the characteristic of $K$ is not two?
\end{exercise}
For completeness, let us
recall the following important question.
%restate Conjecture~\ref{conjecture:zero} as follows:
\begin{question}[Zero divisors in group algebras]
\label{question:zero}
Let $K$ be a field and
$G$ be a torsion-free group. Is it true that
$K[G]$ is a domain?
\end{question}
Our goal is the prove
the following implications:
\[
\ref{question:J}\Longleftarrow\ref{question:units}
\Longrightarrow\ref{question:reduced}
\Longleftrightarrow\ref{question:zero}
\]
We first prove that an affirmative solution to Question~\ref{question:units}
yields a solution to Question~\ref{question:reduced}.
\begin{theorem}
\label{thm:units=>reduced}
Let $K$ be a field of characteristic $\ne2$
and $G$ be a non-trivial group. Assume that $K[G]$ has only trivial units.
Then $K[G]$ is reduced.
\end{theorem}
\begin{proof}
Let $\alpha\in K[G]$ be such that $\alpha^2=0$. We claim that
$\alpha=0$. Since $\alpha^2=0$,
\[
(1-\alpha)(1+\alpha)=1-\alpha^2=1,
\]
it follows that $1-\alpha$ is a unit of $K[G]$. Since units of $K[G]$ are
trivial, there exist $\lambda\in K\setminus\{0\}$ and $g\in G$ such that
$1-\alpha=\lambda g$. We claim that $g=1$. If not,
\[
0=\alpha^2=(1-\lambda g)^2=1-2\lambda g+\lambda^2g^2,
\]
a contradiction. Therefore $g=1$ and hence $\alpha=1-\lambda\in K$. Since
$K$ is a field, one concludes that $\alpha=0$.
\end{proof}
\begin{exercise}
What happens in Theorem \ref{thm:units=>reduced} if $K$ is a field of characteristic two?
\end{exercise}
We now prove that an affirmative solution to Question~\ref{question:units}
also yields a solution to Question~\ref{question:J}.
\begin{theorem}
Let $K$ be a field and $G$ be a non-trivial group. Assume that $K[G]$ has only trivial units.
If $|K|>2$ or $|G|>2$, then $J(K[G])=\{0\}$.
\end{theorem}
\begin{proof}
Let $\alpha\in J(K[G])$. There exist $\lambda\in K\setminus\{0\}$ and $g\in
G$ such that $1-\alpha=\lambda g$. We claim that $g=1$. Assume $g\ne 1$.
If $|K|\geq3$,
then there exist $\mu\in K\setminus\{0,1\}$ such that
\[
1-\alpha\mu=1-\mu+\lambda\mu g
\]
is a non-trivial unit, a contradiction.
If $|G|\geq3$, there exists $h\in G\setminus\{1,g^{-1}\}$ such that
\[
1-\alpha h=1-h+\lambda gh
\]
is a non-trivial unit, a contradiction. Thus
$g=1$ and hence $\alpha=1-\lambda\in K$. Therefore $1+\alpha h$ is a
trivial unit for all $h\ne 1$ and hence $\alpha=0$.
\end{proof}
\begin{exercise}
Prove that if $G=\langle g\rangle\simeq\Z/2$, then
$J(\F_2[G])=\{0,g-1\}\ne\{0\}$.
\end{exercise}
We now want to prove that an affirmative answer to
Question~\ref{question:reduced} yields an affirmative answer to Question~\ref{question:zero}. We first need some preliminaries.
For a group $G$ we consider
\[
\Delta(G)=\{g\in G:(G:C_G(g))<\infty\}.
\]
\begin{exercise}
Prove that $\Delta(\Delta(G))=\Delta(G)$.
\end{exercise}
\begin{proposition}
If $G$ is a group, then $\Delta(G)$
is a characteristic subgroup of $G$.
\end{proposition}
\begin{proof}
We first prove that $\Delta(G)$ is a subgroup of $G$. If $x,y\in\Delta(G)$
and $g\in G$, then
\[
g(xy^{-1})g^{-1}=(gxg^{-1})(gyg^{-1})^{-1}.
\]
Moreover,
$1\in\Delta(G)$. Let us show now that $\Delta(G)$ is characteristic in $G$. If
$f\in\Aut(G)$ and $x\in G$, then, since
\[
f(gxg^{-1})=f(g)f(x)f(g)^{-1},
\]
it follows that $f(x)\in\Delta(G)$.
\end{proof}
\begin{exercise}
Prove that if $G=\langle r,s:s^2=1,srs=r^{-1}\rangle$ is the
infinite dihedral group, then $\Delta(G)=\langle r\rangle$.
\end{exercise}
The following exercise uses the transfer map and
is need
in Proposition \ref{pro:FCabeliano}.
\begin{exercise}
\label{xca:center}
If $G$ is a group such that $Z(G)$ has finite index $n$, then
$(gh)^n=g^nh^n$ for all $g,h\in G$.
\end{exercise}
\begin{proposition}
\label{pro:FCabeliano}
If $G$ is a torsion-free group such
that $\Delta(G)=G$, then $G$ is abelian.
\end{proposition}
\begin{proof}
Let $x,y\in G=\Delta(G)$ and $S=\langle x,y\rangle$. The group $Z(S)=C_S(x)\cap C_S(y)$ has
finite index, say $n$, in $S$. By Exercise~\ref{xca:center},
the map $S\to Z(S)$, $s\mapsto s^n$, is a group homomorphism. Thus
\[
[x,y]^n=(xyx^{-1}y^{-1})^n=x^ny^nx^{-n}y^{-n}=1
\]
as $x^n\in Z(S)$. Since $G$ is torsion-free, $[x,y]=1$.
\end{proof}
\begin{lemma}[Neumann]
\index{Neumann's!lemma}
\label{lem:Neumann}
Let $H_1,\dots,H_m$ be subgroups of $G$.
Assume there are finitely many elements
$a_{ij}\in G$, $1\leq i\leq m$, $1\leq j\leq n$, such that
\[
G=\bigcup_{i=1}^m\bigcup_{j=1}^n H_ia_{ij}.
\]
Then some $H_i$ has finite index in $G$.
\end{lemma}
\begin{proof}
We proceed by induction on $m$. The case $m=1$ is trivial.
Let us assume that $m\geq2$. If $(G:H_1)=\infty$, there exists $b\in G$
such that
\[
H_1b\cap\left(
\bigcup_{j=1}^nH_1a_{1j}\right)=\emptyset.
\]
Since $H_1b\subseteq\bigcup_{i=2}^m\bigcup_{j=1}^n H_ia_{ij}$,
it follows that
\[
H_1a_{1k}\subseteq \bigcup_{i=2}^m\bigcup_{j=1}^n H_ia_{ij}b^{-1}a_{1k}.
\]
Hence $G$ can be covered by finitely many cosets of $H_2,\dots,H_m$. By the inductive hypothesis,
some of these $H_j$ has finite index in $G$.
\end{proof}
We now consider a projection operator of group algebras. If $G$
is a group and $H$ is a subgroup of $G$, let
\[
\pi_H\colon K[G]\to K[H],\quad
\pi_H\left(\sum_{g\in G}\lambda_gg\right)=\sum_{g\in H}\lambda_gg.
\]
If $R$ and $S$ are rings, a $(R,S)$-bimodule is an abelian group
$M$ that is both a left $R$-module and a right $S$-module
and the compatibility condition
\[
(rm)s = r(ms)
\]
holds for all $r\in R$, $s\in S$ and $m\in M$.
\begin{exercise}
Let $G$ be a group and $H$ be a subgroup of $G$. Prove that
if $\alpha\in
K[G]$, then $\pi_H$ is a $(K[H],K[H])$-bimodule homomorphism
with usual left and right multiplications,
\[
\pi_H(\beta\alpha\gamma)=\beta\pi_H(\alpha)\gamma
\]
for all $\beta,\gamma\in K[H]$.
\end{exercise}
%\begin{proof}
% Supongamos que $\alpha=\sum_{g\in G}\lambda_gg=\alpha_1+\alpha_2$, donde
% $\alpha_1=\sum_{g\not\in H}\lambda_gg$ y $\alpha_2=\sum_{g\in
% H}\lambda_gg=\pi_H(\alpha)$. Entonces
% $\beta\alpha\gamma=\beta\alpha_1\gamma+\beta\alpha_2\gamma$, donde
% $\beta\alpha_1\gamma\not\in K[H]$ y $\beta\alpha_2\gamma\in K[H]$.
%\end{proof}
\begin{lemma}
\label{lem:escritura}
Let $X$ be a left transversal of $H$ in $G$. Every $\alpha\in K[G]$ can be written
uniquely as
\[
\alpha=\sum_{x\in X}x\alpha_x,
\]
where $\alpha_x=\pi_H(x^{-1}\alpha)\in K[H]$.
\end{lemma}
\begin{proof}
Let $\alpha\in K[G]$. Since $\supp\alpha$ is finite, $\supp\alpha$ is contained
in finitely many cosets of $H$, say $x_1H,\dots,x_nH$, where each
$x_j$ belongs to $X$. Write $\alpha=\alpha_1+\cdots+\alpha_n$,
where $\alpha_i=\sum_{g\in x_iH}\lambda_gg$. If $g\in x_iH$, then
$x_i^{-1}g\in H$ and hence
\[
\alpha=\sum_{i=1}^n x_i(x_i^{-1}\alpha_i)=\sum_{x\in X}x\alpha_x
\]
with $\alpha_x\in K[H]$ for all $x\in X$. For the uniqueness, note that
for each $x\in X$ the previous exercise implies that
\[
\pi_H(x^{-1}\alpha)
=\pi_H\left(\sum_{y\in X}x^{-1}y\alpha_y\right)
=\sum_{y\in X}\pi_H(x^{-1}y)\alpha_y=\alpha_x,
\]
as
\[
\pi_H(x^{-1}y)=\begin{cases}
1 & \text{if $x=y$},\\
0 & \text{if $x\ne y$}.
\end{cases}\qedhere
\]
\end{proof}
\begin{lemma}
\label{lem:ideal_pi}
Let $G$ be a group and $H$ be a subgroup of $G$. If $I$ is a non-zero
left ideal
of $K[G]$, then $\pi_H(I)\ne\{0\}$.
\end{lemma}
\begin{proof}
Let $X$ be a left transversal of $H$ in $G$ and $\alpha\in I\setminus\{0\}$. By Lemma
\ref{lem:escritura} we can write $\alpha=\sum_{x\in
X}x\alpha_x$ with $\alpha_x=\pi_H(x^{-1}\alpha)\in K[H]$ for all $x\in X$.
Since $\alpha\ne0$, there exists $y\in X$ such that $0\ne
\alpha_y=\pi_H(y^{-1}\alpha)\in\pi_H(I)$ ($y^{-1}\alpha\in I$ since $I$ is
a left ideal).
\end{proof}
Lemma \ref{lem:ideal_pi}
can also be proved directly, without using Lemma~\ref{lem:escritura}. The proof goes as follows: if $\alpha\ne 0$, then by taking $g$ in the
support of $\alpha$, we have that $\pi_H (g^{-1}\alpha)\ne0$.
\begin{exercise}
Let $G$ be a group, $H$ be a subgroup of $G$ and $\alpha\in K[H]$. The following statements hold:
\begin{enumerate}
\item $\alpha$ is invertible in $K[H]$ if and only if $\alpha$ is
invertible in $K[G]$.
\item $\alpha$ is a zero divisor of $K[H]$ if and only if $\alpha$ is
a zero divisor of $K[G]$.
\end{enumerate}
\end{exercise}
% \begin{sol}
% If $\alpha$ is invertible in $K[G]$, there exists $\beta\in K[G]$ such that
% $\alpha\beta=\beta\alpha=1$. Apply $\pi_H$ and use that $\pi_H$
% is a $(K[H],K[H])$-bimodule homomorphism to obtain
% \[
% \alpha\pi_H(\beta)=\pi_H(\alpha\beta)=\pi_H(1)=1=\pi_H(1)=\pi_H(\beta\alpha)=\pi_H(\beta)\alpha.
% \]
% Assume now that $\alpha\beta=0$ for some $\beta\in K[G]\setminus\{0\}$. Let $g\in G$
% be such that $1\in\supp(\beta g)$. Since $\alpha(\beta g)=0$,
% \[
% 0=\pi_H(0)=\pi_H(\alpha(\beta g))=\alpha\pi_H(\beta g),
% \]
% where $\pi_H(\beta g)\in K[H]\setminus\{0\}$, as $1\in\supp(\beta g)$.
% \end{sol}
\begin{lemma}[Passman]
\index{Passman's!lemma}
\label{lem:Passman}
Let $G$ be a group and
$\gamma_1,\gamma_2\in K[G]$ be such that $\gamma_1K[G]\gamma_2=\{0\}$.
Then $\pi_{\Delta(G)}(\gamma_1)\pi_{\Delta(G)}(\gamma_2)=\{0\}$.
\end{lemma}
\begin{proof}
It is enough to show that $\pi_{\Delta(G)}(\gamma_1)\gamma_2=\{0\}$,
as in this case
\[
\{0\}=\pi_{\Delta(G)}(\pi_{\Delta(G)}(\gamma_1)\gamma_2)=\pi_{\Delta}(\gamma_1)\pi_{\Delta(G)}(\gamma_2).
\]
Write $\gamma_1=\alpha_1+\beta_1$, where
\begin{align*}
&\alpha_1=a_1u_1+\cdots+a_ru_r, && u_1,\dots,u_r\in\Delta(G),\\
&\beta_1=b_1v_1+\cdots+b_sv_s, && v_1,\dots,v_s\not\in\Delta(G),\\
&\gamma_2=c_1w_1+\cdots+c_tw_t,&& w_1,\dots,w_t\in G.
\end{align*}
The subgroup $C=\bigcap_{i=1}^rC_G(u_i)$ has finite index in $G$.
Assume that
\[
0\ne \pi_{\Delta}(\gamma_1)\gamma_2=\alpha_1\gamma_2.
\]
Let $g\in\supp(\alpha_1\gamma_2)$.
If $v_i$ is a conjugate in $G$ of some
$gw_j^{-1}$, let $g_{ij}\in G$ be such that
$g_{ij}^{-1}v_ig_{ij}=gw_j^{-1}$. If $v_i$ and $gw_j^{-1}$
are not conjugate,
we take $g_{ij}=1$.
For every $x\in C$ it follows that
$\alpha_1\gamma_2=(x^{-1}\alpha_1x)\gamma_2$. Since
\[
x^{-1}\gamma_1x\gamma_2\in x^{-1}\gamma_1K[G]\gamma_2=0,
\]
it follows that
\begin{align*}
(a_1u_1+\cdots+a_ru_r)\gamma_2&=
\alpha_1\gamma_2=x^{-1}\alpha_1x\gamma_2=-x^{-1}\beta_1x\gamma_2\\
&=-x^{-1}(b_1v_1+\cdots+b_sv_r)x(c_1w_1+\cdots+c_tw_t).
\end{align*}
Now $g\in\supp(\alpha_1\gamma_2)$ implies that there exist $i,j$ such that
$g=x^{-1}v_ixw_j$.
Thus $v_i$ and $gw_j^{-1}$ are conjugate and hence
$x^{-1}v_ix=gw_j^{-1}=g_{ij}^{-1}v_ig_{ij}$, that is
$x\in C_G(v_i)g_{ij}$. This proves that
\[
C\subseteq\bigcup_{i,j}C_G(v_i)g_{ij}.
\]
Since $C$ has finite index in $G$, it follows that
$G$ can be covered by finitely many cosets of
the $C_G(v_i)$. Every $v_i\not\in\Delta(G)$, so
each $C_G(v_i)$ has infinite index in $G$, a contradiction
to Neumann's lemma.
\end{proof}
\begin{exercise}
Let $K$ be a field and $G$ be a torsion-free abelian group. Prove that
$K[G]$ has no non-zero divisors.
\end{exercise}
\begin{theorem}[Passman]
\index{Passman's!theorem}
\label{thm:Passman}
Let $K$ be a field and $G$ be a torsion-free group. If
$K[G]$ is reduced, then $K[G]$ is a domain.
\end{theorem}
\begin{proof}
Assume that $K[G]$ is not a domain. Let $\gamma_1,\gamma_2\in K[G]\setminus\{0\}$
be such that $\gamma_2\gamma_1=0$. If $\alpha\in K[G]$, then
\[
(\gamma_1\alpha\gamma_2)^2=\gamma_1\alpha\gamma_2\gamma_1\alpha\gamma_2=0
\]
and thus $\gamma_1\alpha\gamma_2=0$, as $K[G]$ is reduced. In particular,
$\gamma_1K[G]\gamma_2=\{0\}$. Let $I$ be the left ideal of $K[G]$ generated
by $\gamma_2$. Since $I\ne\{0\}$, it follows
from Lemma~\ref{lem:ideal_pi} that
$\pi_{\Delta(G)}(I)\ne\{0\}$. Hence
$\pi_{\Delta(G)}(\beta\gamma_2)\ne\{ 0\}$ for some $\beta\in K[G]$.
Similarly,
$\pi_{\Delta(G)}(\gamma_1\alpha)\ne\{ 0\}$ for some $\alpha\in K[G]$. Since
\[
\gamma_1\alpha K[G]\beta\gamma_2\subseteq \gamma_1 K[G]\gamma_2=\{0\},
\]
it follows that $\pi_{\Delta(G)}(\gamma_1\alpha)\pi_{\Delta(G)}(\beta\gamma_2)=\{0\}$
by Passman's lemma. Hence $K[\Delta(G)]$ has zero divisors, a contradictions
since $\Delta(G)$ is an abelian group.
\end{proof}