Skip to content

Latest commit

 

History

History
418 lines (340 loc) · 15.3 KB

finetune.md

File metadata and controls

418 lines (340 loc) · 15.3 KB

What is Parameter-Efficient Fine-Tuning (PEFT)?

Can you explain the differences between LoRA and QLoRA? How do you implement LoRA in a model?

What is the role of Unsloth in accelerating fine-tuning processes? How does it improve memory efficiency and speed?

How do you handle padding in sequences during training? ### Discuss strategies for effective padding management.

What are system tokens in Llama Models?

What is the significance of setting a maximum sequence length? How does it affect model performance and memory usage?

Explain Proximal Policy Optimization (PPO) and its application in fine-tuning LLMs? What are its advantages compared to other optimization algorithms?

What is Direct Preference Optimization (DPO), and how does it differ from PPO How do you perform progress logging during model training?

What is the purpose of the Accelerate library in training LLMs? How does it facilitate distributed training?

Can you explain how to use the SFTTrainer class from Hugging Face's trl library? What are its key features?

What are ommon pitfalls when fine-tuning LLMs?

  • Overfitting: This occurs when a model learns the training data too well, leading to high accuracy on that dataset but poor generalization to new data.
  • Catastrophic Forgetting: Description: When fine-tuning on a new task, the model may lose its ability to perform well on previously learned tasks.
  • Hyperparameter Misconfiguration: Description: Incorrect settings for hyperparameters such as learning rate, batch size, and number of epochs can lead to suboptimal model performance.

Which loss function is used in Llama 3.1 models?

Llama 3.1 models is primarily based on cross-entropy loss, which is standard for training language models.

This loss function measures the dissimilarity between the predicted probability distribution of the model and the actual distribution of the target labels.

While cross-entropy loss is used during training, various evaluation metrics (like accuracy, F1 score, etc.) are employed post-training to assess model performance on specific tasks

While Fine-tuning LLMs using distributed training across multiple nodes and GPUs using PyTorch FSDP (Fully Sharded Data Parallel),

Is it possible to use HuggingFace Transformers and SFT Trainer for distributed training?
How data should be distributed? Is data should be split before running training?
How data loader knows which records should be loaded? Each node will get different dataset or same dataset?

Data Distribution:

  • The data is automatically sharded across nodes using the DistributedDataset class
  • Each node gets a unique subset of the data based on its rank and world size
  • The data is split at runtime, so you don't need to split it beforehand
  • Each node processes different data to avoid redundancy

Data Loading:

  • The dataloader knows which records to load through the rank-based sharding
  • Each node's dataset is determined by: shard_size = total_data // world_size
  • Data indices for each node: start_idx = rank * shard_size

FSDP Configuration:

  • Uses mixed precision training (FP16) for efficiency
  • Implements transformer-specific auto wrap policy
  • Enables activation checkpointing to save memory
  • Configures backward prefetching for better performance

Distributed Training Setup:

  • Initializes distributed environment using NCCL backend
  • Sets up proper device mapping for multi-GPU training
  • Handles proper model distribution across GPUs using FSDP
torchrun --nproc_per_node=8 --nnodes=4 --node_rank=0 --master_addr="master_ip" --master_port=29500 train.py
Show code sample - Training script across multiple nodes (Generated by Claude.ai)
import os
import torch
import torch.distributed as dist
from torch.utils.data import Dataset, DataLoader
from torch.distributed.fsdp import (
    FullyShardedDataParallel as FSDP,
    MixedPrecision,
    StateDictType,
    FullStateDictConfig,
)
from torch.distributed.fsdp.wrap import (
    transformer_auto_wrap_policy,
    size_based_auto_wrap_policy,
)
from transformers import (
    AutoModelForCausalLM,
    AutoTokenizer,
    Trainer,
    TrainingArguments,
    DataCollatorForLanguageModeling,
)
from datasets import load_dataset
from typing import Dict, List
def setup_distributed():
    """ Initialize distributed training environment """
    if "RANK" in os.environ and "WORLD_SIZE" in os.environ:
        rank = int(os.environ["RANK"])
        world_size = int(os.environ["WORLD_SIZE"])
        local_rank = int(os.environ["LOCAL_RANK"])
        
        dist.init_process_group("nccl")
        torch.cuda.set_device(local_rank)
        
        return rank, world_size, local_rank
    else:
        raise ValueError("RANK and WORLD_SIZE environment variables must be set")

class DistributedDataset(Dataset):
    def __init__(self, dataset, rank: int, world_size: int, tokenizer):
        """
        Initialize dataset with sharding for distributed training
        
        Args:
            dataset: HuggingFace dataset
            rank: Current process rank
            world_size: Total number of processes
            tokenizer: HuggingFace tokenizer
        """
        # Shard the dataset
        self.shard_size = len(dataset) // world_size
        start_idx = rank * self.shard_size
        end_idx = start_idx + self.shard_size if rank != world_size - 1 else len(dataset)
        
        self.data = dataset[start_idx:end_idx]
        self.tokenizer = tokenizer
    
    def __len__(self):
        return len(self.data)
    
    def __getitem__(self, idx):
        item = self.data[idx]
        # Assuming 'text' is the column name in your dataset
        encoded = self.tokenizer(
            item['text'],
            truncation=True,
            max_length=512,
            padding='max_length',
            return_tensors='pt'
        )
        return {
            'input_ids': encoded['input_ids'].squeeze(),
            'attention_mask': encoded['attention_mask'].squeeze()
        }

def get_fsdp_config():
    """Configure FSDP settings"""
    mixed_precision_policy = MixedPrecision(
        param_dtype=torch.float16,
        reduce_dtype=torch.float16,
        buffer_dtype=torch.float16,
    )
    
    return {
        "mixed_precision": mixed_precision_policy,
        "auto_wrap_policy": transformer_auto_wrap_policy,
        "sharding_strategy": "FULL_SHARD",
        "cpu_offload": False,
        "backward_prefetch": "BACKWARD_PRE",
        "activation_checkpointing": True,
    }

def main():
    # Setup distributed environment
    rank, world_size, local_rank = setup_distributed()
    
    # Initialize model and tokenizer
    model_name = "facebook/opt-350m"  # Example model
    tokenizer = AutoTokenizer.from_pretrained(model_name)
    model = AutoModelForCausalLM.from_pretrained(model_name)
    
    # Wrap model with FSDP
    fsdp_config = get_fsdp_config()
    model = FSDP(
        model,
        device_id=torch.cuda.current_device(),
        **fsdp_config
    )
    
    # Load and prepare dataset
    dataset = load_dataset("your_dataset_name")
    train_dataset = DistributedDataset(
        dataset['train'],
        rank,
        world_size,
        tokenizer
    )
    
    # Training arguments
    training_args = TrainingArguments(
        output_dir="./output",
        per_device_train_batch_size=8,
        gradient_accumulation_steps=4,
        num_train_epochs=3,
        learning_rate=5e-5,
        fp16=True,
        logging_steps=100,
        save_steps=1000,
        local_rank=local_rank,
    )
    
    # Data collator
    data_collator = DataCollatorForLanguageModeling(
        tokenizer=tokenizer,
        mlm=False
    )
    
    # Initialize trainer
    trainer = Trainer(
        model=model,
        args=training_args,
        train_dataset=train_dataset,
        data_collator=data_collator,
    )
    
    # Start training
    trainer.train()
    
    # Save model (only on rank 0)
    if rank == 0:
        save_policy = FullStateDictConfig(offload_to_cpu=True, rank0_only=True)
        with FSDP.state_dict_type(model, StateDictType.FULL_STATE_DICT, save_policy):
            state_dict = model.state_dict()
            torch.save(state_dict, "model_checkpoint.pt")

if __name__ == "__main__":
    main()

While fine-tune LLMs using the SFT Trainer for mixed tasks (such as text generation, question answering, and summarization), how to pass multiple evaluation metrics task-wise to compute performance?

Set up the SFT Trainer in Hugging Face's transformers library to fine-tune a model for mixed tasks (text generation, question answering, and summarization) while specifying multiple evaluation metrics. Show code sample (Generated by Claude.ai) ```python from transformers import Trainer, TrainingArguments, AutoModelForSeq2SeqLM, AutoTokenizer from datasets import load_dataset, load_metric from typing import Dict, List, Union import numpy as np

class MultiTaskTrainer(Trainer): """Custom Trainer class for handling multiple tasks""" def init(self, *args, **kwargs): # Extract task-specific metrics before passing remaining args to parent self.metrics = kwargs.pop('metrics', {}) super().init(*args, **kwargs)

def compute_metrics(self, eval_pred):
    """Compute metrics for all tasks"""
    predictions, labels = eval_pred
    # First element in labels is assumed to be task_ids
    task_ids = labels[:, 0].tolist()
    # Remove task_ids from labels
    labels = labels[:, 1:]
    
    # Convert logits to predictions
    predictions = np.argmax(predictions, axis=-1)
    
    # Decode predictions and labels
    decoded_preds = self.tokenizer.batch_decode(predictions, skip_special_tokens=True)
    decoded_labels = self.tokenizer.batch_decode(labels, skip_special_tokens=True)
    
    # Group predictions by task
    task_predictions: Dict[str, List] = {
        "text_generation": [],
        "question_answering": [],
        "summarization": []
    }
    task_labels: Dict[str, List] = {
        "text_generation": [],
        "question_answering": [],
        "summarization": []
    }
    
    # Map task IDs to task types
    task_map = {0: "text_generation", 1: "question_answering", 2: "summarization"}
    
    # Group predictions and labels by task
    for pred, label, task_id in zip(decoded_preds, decoded_labels, task_ids):
        task_type = task_map[task_id]
        task_predictions[task_type].append(pred)
        task_labels[task_type].append(label)
    
    # Compute metrics for each task
    results = {}
    for task_type in task_predictions:
        if len(task_predictions[task_type]) > 0:
            task_metric = self.metrics[task_type].compute(
                predictions=task_predictions[task_type],
                references=task_labels[task_type]
            )
            # Add task prefix to metric names
            results.update({
                f"{task_type}_{k}": v 
                for k, v in task_metric.items()
            })
    
    return results

class MultiTaskDataset: """Dataset class that handles multiple tasks""" def init(self, dataset, tokenizer, max_length=512): self.dataset = dataset self.tokenizer = tokenizer self.max_length = max_length

def __len__(self):
    return len(self.dataset)

def __getitem__(self, idx):
    item = self.dataset[idx]
    
    # Determine task type from dataset
    task_type = item['task_type']  # Assume dataset has this field
    task_id = {
        "text_generation": 0,
        "question_answering": 1,
        "summarization": 2
    }[task_type]
    
    # Encode input and output
    inputs = self.tokenizer(
        item['input_text'],
        truncation=True,
        max_length=self.max_length,
        padding='max_length',
        return_tensors='pt'
    )
    
    outputs = self.tokenizer(
        item['output_text'],
        truncation=True,
        max_length=self.max_length,
        padding='max_length',
        return_tensors='pt'
    )
    
    # Add task_id as first token of labels
    labels = outputs['input_ids'].clone()
    labels = torch.cat([torch.tensor([[task_id]]), labels], dim=1)
    
    return {
        'input_ids': inputs['input_ids'].squeeze(),
        'attention_mask': inputs['attention_mask'].squeeze(),
        'labels': labels.squeeze()
    }

def main(): # Load model and tokenizer model_name = "your-model-name" # Replace with your model name model = AutoModelForSeq2SeqLM.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name)

# Load metrics
metrics = {
    "text_generation": load_metric("bleu"),
    "question_answering": load_metric("squad"),
    "summarization": load_metric("rouge")
}

# Load dataset
dataset = load_dataset("your-dataset-name")

# Create multi-task datasets
train_dataset = MultiTaskDataset(dataset['train'], tokenizer)
eval_dataset = MultiTaskDataset(dataset['validation'], tokenizer)

# Define training arguments
training_args = TrainingArguments(
    output_dir="./results",
    evaluation_strategy="epoch",
    per_device_train_batch_size=8,
    per_device_eval_batch_size=8,
    num_train_epochs=3,
    logging_dir='./logs',
)

# Initialize the custom trainer
trainer = MultiTaskTrainer(
    model=model,
    args=training_args,
    train_dataset=train_dataset,
    eval_dataset=eval_dataset,
    tokenizer=tokenizer,
    metrics=metrics
)

# Train and evaluate
trainer.train()
trainer.evaluate()

if name == "main": main()

</details>

### GPTQ vs. BitsandBytes (NF4)

NF4 is part of the bitsandbytes library,
- **Normalization**: Weights are normalized before quantization, allowing for efficient representation of common values.
- **4-bit Quantization**: Weights are quantized to 4 bits with evenly spaced levels based on normalized weights.
- **Dequantization During Computation**: Although weights are stored in 4-bit format, they are dequantized during computation to enhance performance.


GPTQ stands for Post-Training Quantization,
- **Dynamic Dequantization**: Weights are dynamically dequantized to float16 during inference, which improves performance while keeping memory requirements low.
- **Custom Kernels**: Utilizes specialized kernels for matrix-vector operations, resulting in faster processing speeds compared to other methods like bitsandbytes and GGML.
- **Performance Metrics**: In tests with models like Llama-7B, GPTQ showed lower perplexity (PPL) scores and higher token generation rates than both GGML and NF4


#### Skip Connections vs. Residual
there are two fundamental ways that one could use skip connections through different non-sequential layers:
a) **addition** as in residual architectures,
b) **concatenation** as in densely connected architectures.

<img src="https://theaisummer.com/static/8d19d048cd68d6dce362e025cf3b635a/1ac66/skip-connection.png"/>
<img src="https://theaisummer.com/static/b8156f7a258e0c46eb1e5e7b6bb591bf/ad12c/resnet-concatenation.png" />