forked from ggerganov/llama.cpp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun.cpp
735 lines (626 loc) · 24.4 KB
/
run.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
#if defined(_WIN32)
# include <windows.h>
#else
# include <unistd.h>
#endif
#if defined(LLAMA_USE_CURL)
# include <curl/curl.h>
#endif
#include <cstdarg>
#include <cstdio>
#include <cstring>
#include <filesystem>
#include <iostream>
#include <sstream>
#include <string>
#include <vector>
#include "common.h"
#include "json.hpp"
#include "llama-cpp.h"
#define printe(...) \
do { \
fprintf(stderr, __VA_ARGS__); \
} while (0)
class Opt {
public:
int init(int argc, const char ** argv) {
construct_help_str_();
// Parse arguments
if (parse(argc, argv)) {
printe("Error: Failed to parse arguments.\n");
help();
return 1;
}
// If help is requested, show help and exit
if (help_) {
help();
return 2;
}
return 0; // Success
}
std::string model_;
std::string user_;
int context_size_ = 2048, ngl_ = -1;
private:
std::string help_str_;
bool help_ = false;
void construct_help_str_() {
help_str_ =
"Description:\n"
" Runs a llm\n"
"\n"
"Usage:\n"
" llama-run [options] model [prompt]\n"
"\n"
"Options:\n"
" -c, --context-size <value>\n"
" Context size (default: " +
std::to_string(context_size_);
help_str_ +=
")\n"
" -n, --ngl <value>\n"
" Number of GPU layers (default: " +
std::to_string(ngl_);
help_str_ +=
")\n"
" -h, --help\n"
" Show help message\n"
"\n"
"Commands:\n"
" model\n"
" Model is a string with an optional prefix of \n"
" huggingface:// (hf://), ollama://, https:// or file://.\n"
" If no protocol is specified and a file exists in the specified\n"
" path, file:// is assumed, otherwise if a file does not exist in\n"
" the specified path, ollama:// is assumed. Models that are being\n"
" pulled are downloaded with .partial extension while being\n"
" downloaded and then renamed as the file without the .partial\n"
" extension when complete.\n"
"\n"
"Examples:\n"
" llama-run llama3\n"
" llama-run ollama://granite-code\n"
" llama-run ollama://smollm:135m\n"
" llama-run hf://QuantFactory/SmolLM-135M-GGUF/SmolLM-135M.Q2_K.gguf\n"
" llama-run huggingface://bartowski/SmolLM-1.7B-Instruct-v0.2-GGUF/SmolLM-1.7B-Instruct-v0.2-IQ3_M.gguf\n"
" llama-run https://example.com/some-file1.gguf\n"
" llama-run some-file2.gguf\n"
" llama-run file://some-file3.gguf\n"
" llama-run --ngl 99 some-file4.gguf\n"
" llama-run --ngl 99 some-file5.gguf Hello World\n";
}
int parse(int argc, const char ** argv) {
int positional_args_i = 0;
for (int i = 1; i < argc; ++i) {
if (strcmp(argv[i], "-c") == 0 || strcmp(argv[i], "--context-size") == 0) {
if (i + 1 >= argc) {
return 1;
}
context_size_ = std::atoi(argv[++i]);
} else if (strcmp(argv[i], "-n") == 0 || strcmp(argv[i], "--ngl") == 0) {
if (i + 1 >= argc) {
return 1;
}
ngl_ = std::atoi(argv[++i]);
} else if (strcmp(argv[i], "-h") == 0 || strcmp(argv[i], "--help") == 0) {
help_ = true;
return 0;
} else if (!positional_args_i) {
++positional_args_i;
model_ = argv[i];
} else if (positional_args_i == 1) {
++positional_args_i;
user_ = argv[i];
} else {
user_ += " " + std::string(argv[i]);
}
}
return model_.empty(); // model_ is the only required value
}
void help() const { printf("%s", help_str_.c_str()); }
};
struct progress_data {
size_t file_size = 0;
std::chrono::steady_clock::time_point start_time = std::chrono::steady_clock::now();
bool printed = false;
};
struct FileDeleter {
void operator()(FILE * file) const {
if (file) {
fclose(file);
}
}
};
typedef std::unique_ptr<FILE, FileDeleter> FILE_ptr;
#ifdef LLAMA_USE_CURL
class CurlWrapper {
public:
int init(const std::string & url, const std::vector<std::string> & headers, const std::string & output_file,
const bool progress, std::string * response_str = nullptr) {
std::string output_file_partial;
curl = curl_easy_init();
if (!curl) {
return 1;
}
progress_data data;
FILE_ptr out;
if (!output_file.empty()) {
output_file_partial = output_file + ".partial";
out.reset(fopen(output_file_partial.c_str(), "ab"));
}
set_write_options(response_str, out);
data.file_size = set_resume_point(output_file_partial);
set_progress_options(progress, data);
set_headers(headers);
perform(url);
if (!output_file.empty()) {
std::filesystem::rename(output_file_partial, output_file);
}
return 0;
}
~CurlWrapper() {
if (chunk) {
curl_slist_free_all(chunk);
}
if (curl) {
curl_easy_cleanup(curl);
}
}
private:
CURL * curl = nullptr;
struct curl_slist * chunk = nullptr;
void set_write_options(std::string * response_str, const FILE_ptr & out) {
if (response_str) {
curl_easy_setopt(curl, CURLOPT_WRITEFUNCTION, capture_data);
curl_easy_setopt(curl, CURLOPT_WRITEDATA, response_str);
} else {
curl_easy_setopt(curl, CURLOPT_WRITEFUNCTION, write_data);
curl_easy_setopt(curl, CURLOPT_WRITEDATA, out.get());
}
}
size_t set_resume_point(const std::string & output_file) {
size_t file_size = 0;
if (std::filesystem::exists(output_file)) {
file_size = std::filesystem::file_size(output_file);
curl_easy_setopt(curl, CURLOPT_RESUME_FROM_LARGE, static_cast<curl_off_t>(file_size));
}
return file_size;
}
void set_progress_options(bool progress, progress_data & data) {
if (progress) {
curl_easy_setopt(curl, CURLOPT_NOPROGRESS, 0L);
curl_easy_setopt(curl, CURLOPT_XFERINFODATA, &data);
curl_easy_setopt(curl, CURLOPT_XFERINFOFUNCTION, progress_callback);
}
}
void set_headers(const std::vector<std::string> & headers) {
if (!headers.empty()) {
if (chunk) {
curl_slist_free_all(chunk);
chunk = 0;
}
for (const auto & header : headers) {
chunk = curl_slist_append(chunk, header.c_str());
}
curl_easy_setopt(curl, CURLOPT_HTTPHEADER, chunk);
}
}
void perform(const std::string & url) {
CURLcode res;
curl_easy_setopt(curl, CURLOPT_URL, url.c_str());
curl_easy_setopt(curl, CURLOPT_FOLLOWLOCATION, 1L);
curl_easy_setopt(curl, CURLOPT_DEFAULT_PROTOCOL, "https");
curl_easy_setopt(curl, CURLOPT_FAILONERROR, 1L);
res = curl_easy_perform(curl);
if (res != CURLE_OK) {
printe("curl_easy_perform() failed: %s\n", curl_easy_strerror(res));
}
}
static std::string human_readable_time(double seconds) {
int hrs = static_cast<int>(seconds) / 3600;
int mins = (static_cast<int>(seconds) % 3600) / 60;
int secs = static_cast<int>(seconds) % 60;
std::ostringstream out;
if (hrs > 0) {
out << hrs << "h " << std::setw(2) << std::setfill('0') << mins << "m " << std::setw(2) << std::setfill('0')
<< secs << "s";
} else if (mins > 0) {
out << mins << "m " << std::setw(2) << std::setfill('0') << secs << "s";
} else {
out << secs << "s";
}
return out.str();
}
static std::string human_readable_size(curl_off_t size) {
static const char * suffix[] = { "B", "KB", "MB", "GB", "TB" };
char length = sizeof(suffix) / sizeof(suffix[0]);
int i = 0;
double dbl_size = size;
if (size > 1024) {
for (i = 0; (size / 1024) > 0 && i < length - 1; i++, size /= 1024) {
dbl_size = size / 1024.0;
}
}
std::ostringstream out;
out << std::fixed << std::setprecision(2) << dbl_size << " " << suffix[i];
return out.str();
}
static int progress_callback(void * ptr, curl_off_t total_to_download, curl_off_t now_downloaded, curl_off_t,
curl_off_t) {
progress_data * data = static_cast<progress_data *>(ptr);
if (total_to_download <= 0) {
return 0;
}
total_to_download += data->file_size;
const curl_off_t now_downloaded_plus_file_size = now_downloaded + data->file_size;
const curl_off_t percentage = (now_downloaded_plus_file_size * 100) / total_to_download;
const curl_off_t pos = (percentage / 5);
std::string progress_bar;
for (int i = 0; i < 20; ++i) {
progress_bar.append((i < pos) ? "█" : " ");
}
// Calculate download speed and estimated time to completion
const auto now = std::chrono::steady_clock::now();
const std::chrono::duration<double> elapsed_seconds = now - data->start_time;
const double speed = now_downloaded / elapsed_seconds.count();
const double estimated_time = (total_to_download - now_downloaded) / speed;
printe("\r%ld%% |%s| %s/%s %.2f MB/s %s ", percentage, progress_bar.c_str(),
human_readable_size(now_downloaded).c_str(), human_readable_size(total_to_download).c_str(),
speed / (1024 * 1024), human_readable_time(estimated_time).c_str());
fflush(stderr);
data->printed = true;
return 0;
}
// Function to write data to a file
static size_t write_data(void * ptr, size_t size, size_t nmemb, void * stream) {
FILE * out = static_cast<FILE *>(stream);
return fwrite(ptr, size, nmemb, out);
}
// Function to capture data into a string
static size_t capture_data(void * ptr, size_t size, size_t nmemb, void * stream) {
std::string * str = static_cast<std::string *>(stream);
str->append(static_cast<char *>(ptr), size * nmemb);
return size * nmemb;
}
};
#endif
class LlamaData {
public:
llama_model_ptr model;
llama_sampler_ptr sampler;
llama_context_ptr context;
std::vector<llama_chat_message> messages;
std::vector<std::string> msg_strs;
std::vector<char> fmtted;
int init(Opt & opt) {
model = initialize_model(opt);
if (!model) {
return 1;
}
context = initialize_context(model, opt.context_size_);
if (!context) {
return 1;
}
sampler = initialize_sampler();
return 0;
}
private:
#ifdef LLAMA_USE_CURL
int download(const std::string & url, const std::vector<std::string> & headers, const std::string & output_file,
const bool progress, std::string * response_str = nullptr) {
CurlWrapper curl;
if (curl.init(url, headers, output_file, progress, response_str)) {
return 1;
}
return 0;
}
#else
int download(const std::string &, const std::vector<std::string> &, const std::string &, const bool,
std::string * = nullptr) {
printe("%s: llama.cpp built without libcurl, downloading from an url not supported.\n", __func__);
return 1;
}
#endif
int huggingface_dl(const std::string & model, const std::vector<std::string> headers, const std::string & bn) {
// Find the second occurrence of '/' after protocol string
size_t pos = model.find('/');
pos = model.find('/', pos + 1);
if (pos == std::string::npos) {
return 1;
}
const std::string hfr = model.substr(0, pos);
const std::string hff = model.substr(pos + 1);
const std::string url = "https://huggingface.co/" + hfr + "/resolve/main/" + hff;
return download(url, headers, bn, true);
}
int ollama_dl(std::string & model, const std::vector<std::string> headers, const std::string & bn) {
if (model.find('/') == std::string::npos) {
model = "library/" + model;
}
std::string model_tag = "latest";
size_t colon_pos = model.find(':');
if (colon_pos != std::string::npos) {
model_tag = model.substr(colon_pos + 1);
model = model.substr(0, colon_pos);
}
std::string manifest_url = "https://registry.ollama.ai/v2/" + model + "/manifests/" + model_tag;
std::string manifest_str;
const int ret = download(manifest_url, headers, "", false, &manifest_str);
if (ret) {
return ret;
}
nlohmann::json manifest = nlohmann::json::parse(manifest_str);
std::string layer;
for (const auto & l : manifest["layers"]) {
if (l["mediaType"] == "application/vnd.ollama.image.model") {
layer = l["digest"];
break;
}
}
std::string blob_url = "https://registry.ollama.ai/v2/" + model + "/blobs/" + layer;
return download(blob_url, headers, bn, true);
}
std::string basename(const std::string & path) {
const size_t pos = path.find_last_of("/\\");
if (pos == std::string::npos) {
return path;
}
return path.substr(pos + 1);
}
int remove_proto(std::string & model_) {
const std::string::size_type pos = model_.find("://");
if (pos == std::string::npos) {
return 1;
}
model_ = model_.substr(pos + 3); // Skip past "://"
return 0;
}
int resolve_model(std::string & model_) {
const std::string bn = basename(model_);
const std::vector<std::string> headers = { "--header",
"Accept: application/vnd.docker.distribution.manifest.v2+json" };
int ret = 0;
if (string_starts_with(model_, "file://") || std::filesystem::exists(bn)) {
remove_proto(model_);
} else if (string_starts_with(model_, "hf://") || string_starts_with(model_, "huggingface://")) {
remove_proto(model_);
ret = huggingface_dl(model_, headers, bn);
} else if (string_starts_with(model_, "ollama://")) {
remove_proto(model_);
ret = ollama_dl(model_, headers, bn);
} else if (string_starts_with(model_, "https://")) {
download(model_, headers, bn, true);
} else {
ret = ollama_dl(model_, headers, bn);
}
model_ = bn;
return ret;
}
// Initializes the model and returns a unique pointer to it
llama_model_ptr initialize_model(Opt & opt) {
ggml_backend_load_all();
llama_model_params model_params = llama_model_default_params();
model_params.n_gpu_layers = opt.ngl_ >= 0 ? opt.ngl_ : model_params.n_gpu_layers;
resolve_model(opt.model_);
llama_model_ptr model(llama_load_model_from_file(opt.model_.c_str(), model_params));
if (!model) {
printe("%s: error: unable to load model from file: %s\n", __func__, opt.model_.c_str());
}
return model;
}
// Initializes the context with the specified parameters
llama_context_ptr initialize_context(const llama_model_ptr & model, const int n_ctx) {
llama_context_params ctx_params = llama_context_default_params();
ctx_params.n_ctx = n_ctx;
ctx_params.n_batch = n_ctx;
llama_context_ptr context(llama_new_context_with_model(model.get(), ctx_params));
if (!context) {
printe("%s: error: failed to create the llama_context\n", __func__);
}
return context;
}
// Initializes and configures the sampler
llama_sampler_ptr initialize_sampler() {
llama_sampler_ptr sampler(llama_sampler_chain_init(llama_sampler_chain_default_params()));
llama_sampler_chain_add(sampler.get(), llama_sampler_init_min_p(0.05f, 1));
llama_sampler_chain_add(sampler.get(), llama_sampler_init_temp(0.8f));
llama_sampler_chain_add(sampler.get(), llama_sampler_init_dist(LLAMA_DEFAULT_SEED));
return sampler;
}
};
// Add a message to `messages` and store its content in `msg_strs`
static void add_message(const char * role, const std::string & text, LlamaData & llama_data) {
llama_data.msg_strs.push_back(std::move(text));
llama_data.messages.push_back({ role, llama_data.msg_strs.back().c_str() });
}
// Function to apply the chat template and resize `formatted` if needed
static int apply_chat_template(LlamaData & llama_data, const bool append) {
int result = llama_chat_apply_template(
llama_data.model.get(), nullptr, llama_data.messages.data(), llama_data.messages.size(), append,
append ? llama_data.fmtted.data() : nullptr, append ? llama_data.fmtted.size() : 0);
if (append && result > static_cast<int>(llama_data.fmtted.size())) {
llama_data.fmtted.resize(result);
result = llama_chat_apply_template(llama_data.model.get(), nullptr, llama_data.messages.data(),
llama_data.messages.size(), append, llama_data.fmtted.data(),
llama_data.fmtted.size());
}
return result;
}
// Function to tokenize the prompt
static int tokenize_prompt(const llama_model_ptr & model, const std::string & prompt,
std::vector<llama_token> & prompt_tokens) {
const int n_prompt_tokens = -llama_tokenize(model.get(), prompt.c_str(), prompt.size(), NULL, 0, true, true);
prompt_tokens.resize(n_prompt_tokens);
if (llama_tokenize(model.get(), prompt.c_str(), prompt.size(), prompt_tokens.data(), prompt_tokens.size(), true,
true) < 0) {
printe("failed to tokenize the prompt\n");
return -1;
}
return n_prompt_tokens;
}
// Check if we have enough space in the context to evaluate this batch
static int check_context_size(const llama_context_ptr & ctx, const llama_batch & batch) {
const int n_ctx = llama_n_ctx(ctx.get());
const int n_ctx_used = llama_get_kv_cache_used_cells(ctx.get());
if (n_ctx_used + batch.n_tokens > n_ctx) {
printf("\033[0m\n");
printe("context size exceeded\n");
return 1;
}
return 0;
}
// convert the token to a string
static int convert_token_to_string(const llama_model_ptr & model, const llama_token token_id, std::string & piece) {
char buf[256];
int n = llama_token_to_piece(model.get(), token_id, buf, sizeof(buf), 0, true);
if (n < 0) {
printe("failed to convert token to piece\n");
return 1;
}
piece = std::string(buf, n);
return 0;
}
static void print_word_and_concatenate_to_response(const std::string & piece, std::string & response) {
printf("%s", piece.c_str());
fflush(stdout);
response += piece;
}
// helper function to evaluate a prompt and generate a response
static int generate(LlamaData & llama_data, const std::string & prompt, std::string & response) {
std::vector<llama_token> tokens;
if (tokenize_prompt(llama_data.model, prompt, tokens) < 0) {
return 1;
}
// prepare a batch for the prompt
llama_batch batch = llama_batch_get_one(tokens.data(), tokens.size());
llama_token new_token_id;
while (true) {
check_context_size(llama_data.context, batch);
if (llama_decode(llama_data.context.get(), batch)) {
printe("failed to decode\n");
return 1;
}
// sample the next token, check is it an end of generation?
new_token_id = llama_sampler_sample(llama_data.sampler.get(), llama_data.context.get(), -1);
if (llama_token_is_eog(llama_data.model.get(), new_token_id)) {
break;
}
std::string piece;
if (convert_token_to_string(llama_data.model, new_token_id, piece)) {
return 1;
}
print_word_and_concatenate_to_response(piece, response);
// prepare the next batch with the sampled token
batch = llama_batch_get_one(&new_token_id, 1);
}
return 0;
}
static int read_user_input(std::string & user) {
std::getline(std::cin, user);
return user.empty(); // Should have data in happy path
}
// Function to generate a response based on the prompt
static int generate_response(LlamaData & llama_data, const std::string & prompt, std::string & response) {
// Set response color
printf("\033[33m");
if (generate(llama_data, prompt, response)) {
printe("failed to generate response\n");
return 1;
}
// End response with color reset and newline
printf("\n\033[0m");
return 0;
}
// Helper function to apply the chat template and handle errors
static int apply_chat_template_with_error_handling(LlamaData & llama_data, const bool append, int & output_length) {
const int new_len = apply_chat_template(llama_data, append);
if (new_len < 0) {
printe("failed to apply the chat template\n");
return -1;
}
output_length = new_len;
return 0;
}
// Helper function to handle user input
static int handle_user_input(std::string & user_input, const std::string & user_) {
if (!user_.empty()) {
user_input = user_;
return 0; // No need for interactive input
}
printf(
"\r "
"\r\033[32m> \033[0m");
return read_user_input(user_input); // Returns true if input ends the loop
}
// Function to tokenize the prompt
static int chat_loop(LlamaData & llama_data, const std::string & user_) {
int prev_len = 0;
llama_data.fmtted.resize(llama_n_ctx(llama_data.context.get()));
while (true) {
// Get user input
std::string user_input;
while (handle_user_input(user_input, user_)) {
}
add_message("user", user_.empty() ? user_input : user_, llama_data);
int new_len;
if (apply_chat_template_with_error_handling(llama_data, true, new_len) < 0) {
return 1;
}
std::string prompt(llama_data.fmtted.begin() + prev_len, llama_data.fmtted.begin() + new_len);
std::string response;
if (generate_response(llama_data, prompt, response)) {
return 1;
}
if (!user_.empty()) {
break;
}
add_message("assistant", response, llama_data);
if (apply_chat_template_with_error_handling(llama_data, false, prev_len) < 0) {
return 1;
}
}
return 0;
}
static void log_callback(const enum ggml_log_level level, const char * text, void *) {
if (level == GGML_LOG_LEVEL_ERROR) {
printe("%s", text);
}
}
static bool is_stdin_a_terminal() {
#if defined(_WIN32)
HANDLE hStdin = GetStdHandle(STD_INPUT_HANDLE);
DWORD mode;
return GetConsoleMode(hStdin, &mode);
#else
return isatty(STDIN_FILENO);
#endif
}
static std::string read_pipe_data() {
std::ostringstream result;
result << std::cin.rdbuf(); // Read all data from std::cin
return result.str();
}
int main(int argc, const char ** argv) {
Opt opt;
const int ret = opt.init(argc, argv);
if (ret == 2) {
return 0;
} else if (ret) {
return 1;
}
if (!is_stdin_a_terminal()) {
if (!opt.user_.empty()) {
opt.user_ += "\n\n";
}
opt.user_ += read_pipe_data();
}
llama_log_set(log_callback, nullptr);
LlamaData llama_data;
if (llama_data.init(opt)) {
return 1;
}
if (chat_loop(llama_data, opt.user_)) {
return 1;
}
return 0;
}