forked from solvespace/solvespace
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCDemo.c
269 lines (234 loc) · 10.9 KB
/
CDemo.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
/*-----------------------------------------------------------------------------
* Some sample code for slvs.dll. We draw some geometric entities, provide
* initial guesses for their positions, and then constrain them. The solver
* calculates their new positions, in order to satisfy the constraints.
*
* Copyright 2008-2013 Jonathan Westhues.
*---------------------------------------------------------------------------*/
#ifdef WIN32
# include <windows.h>
#endif
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdint.h>
#include <slvs.h>
static Slvs_System sys;
static void *CheckMalloc(size_t n)
{
void *r = malloc(n);
if(!r) {
printf("out of memory!\n");
exit(-1);
}
return r;
}
/*-----------------------------------------------------------------------------
* An example of a constraint in 3d. We create a single group, with some
* entities and constraints.
*---------------------------------------------------------------------------*/
void Example3d()
{
/* This will contain a single group, which will arbitrarily number 1. */
Slvs_hGroup g = 1;
/* A point, initially at (x y z) = (10 10 10) */
sys.param[sys.params++] = Slvs_MakeParam(1, g, 10.0);
sys.param[sys.params++] = Slvs_MakeParam(2, g, 10.0);
sys.param[sys.params++] = Slvs_MakeParam(3, g, 10.0);
sys.entity[sys.entities++] = Slvs_MakePoint3d(101, g, 1, 2, 3);
/* and a second point at (20 20 20) */
sys.param[sys.params++] = Slvs_MakeParam(4, g, 20.0);
sys.param[sys.params++] = Slvs_MakeParam(5, g, 20.0);
sys.param[sys.params++] = Slvs_MakeParam(6, g, 20.0);
sys.entity[sys.entities++] = Slvs_MakePoint3d(102, g, 4, 5, 6);
/* and a line segment connecting them. */
sys.entity[sys.entities++] = Slvs_MakeLineSegment(200, g,
SLVS_FREE_IN_3D, 101, 102);
/* The distance between the points should be 30.0 units. */
sys.constraint[sys.constraints++] = Slvs_MakeConstraint(
1, g,
SLVS_C_PT_PT_DISTANCE,
SLVS_FREE_IN_3D,
30.0,
101, 102, 0, 0);
/* Let's tell the solver to keep the second point as close to constant
* as possible, instead moving the first point. */
sys.dragged[0] = 4;
sys.dragged[1] = 5;
sys.dragged[2] = 6;
/* Now that we have written our system, we solve. */
Slvs_Solve(&sys, g);
if(sys.result == SLVS_RESULT_OKAY) {
printf("okay; now at (%.3f %.3f %.3f)\n"
" (%.3f %.3f %.3f)\n",
sys.param[0].val, sys.param[1].val, sys.param[2].val,
sys.param[3].val, sys.param[4].val, sys.param[5].val);
printf("%d DOF\n", sys.dof);
} else {
printf("solve failed");
}
}
/*-----------------------------------------------------------------------------
* An example of a constraint in 2d. In our first group, we create a workplane
* along the reference frame's xy plane. In a second group, we create some
* entities in that group and dimension them.
*---------------------------------------------------------------------------*/
void Example2d()
{
Slvs_hGroup g;
double qw, qx, qy, qz;
g = 1;
/* First, we create our workplane. Its origin corresponds to the origin
* of our base frame (x y z) = (0 0 0) */
sys.param[sys.params++] = Slvs_MakeParam(1, g, 0.0);
sys.param[sys.params++] = Slvs_MakeParam(2, g, 0.0);
sys.param[sys.params++] = Slvs_MakeParam(3, g, 0.0);
sys.entity[sys.entities++] = Slvs_MakePoint3d(101, g, 1, 2, 3);
/* and it is parallel to the xy plane, so it has basis vectors (1 0 0)
* and (0 1 0). */
Slvs_MakeQuaternion(1, 0, 0,
0, 1, 0, &qw, &qx, &qy, &qz);
sys.param[sys.params++] = Slvs_MakeParam(4, g, qw);
sys.param[sys.params++] = Slvs_MakeParam(5, g, qx);
sys.param[sys.params++] = Slvs_MakeParam(6, g, qy);
sys.param[sys.params++] = Slvs_MakeParam(7, g, qz);
sys.entity[sys.entities++] = Slvs_MakeNormal3d(102, g, 4, 5, 6, 7);
sys.entity[sys.entities++] = Slvs_MakeWorkplane(200, g, 101, 102);
/* Now create a second group. We'll solve group 2, while leaving group 1
* constant; so the workplane that we've created will be locked down,
* and the solver can't move it. */
g = 2;
/* These points are represented by their coordinates (u v) within the
* workplane, so they need only two parameters each. */
sys.param[sys.params++] = Slvs_MakeParam(11, g, 10.0);
sys.param[sys.params++] = Slvs_MakeParam(12, g, 20.0);
sys.entity[sys.entities++] = Slvs_MakePoint2d(301, g, 200, 11, 12);
sys.param[sys.params++] = Slvs_MakeParam(13, g, 20.0);
sys.param[sys.params++] = Slvs_MakeParam(14, g, 10.0);
sys.entity[sys.entities++] = Slvs_MakePoint2d(302, g, 200, 13, 14);
/* And we create a line segment with those endpoints. */
sys.entity[sys.entities++] = Slvs_MakeLineSegment(400, g,
200, 301, 302);
/* Now three more points. */
sys.param[sys.params++] = Slvs_MakeParam(15, g, 100.0);
sys.param[sys.params++] = Slvs_MakeParam(16, g, 120.0);
sys.entity[sys.entities++] = Slvs_MakePoint2d(303, g, 200, 15, 16);
sys.param[sys.params++] = Slvs_MakeParam(17, g, 120.0);
sys.param[sys.params++] = Slvs_MakeParam(18, g, 110.0);
sys.entity[sys.entities++] = Slvs_MakePoint2d(304, g, 200, 17, 18);
sys.param[sys.params++] = Slvs_MakeParam(19, g, 115.0);
sys.param[sys.params++] = Slvs_MakeParam(20, g, 115.0);
sys.entity[sys.entities++] = Slvs_MakePoint2d(305, g, 200, 19, 20);
/* And arc, centered at point 303, starting at point 304, ending at
* point 305. */
sys.entity[sys.entities++] = Slvs_MakeArcOfCircle(401, g, 200, 102,
303, 304, 305);
/* Now one more point, and a distance */
sys.param[sys.params++] = Slvs_MakeParam(21, g, 200.0);
sys.param[sys.params++] = Slvs_MakeParam(22, g, 200.0);
sys.entity[sys.entities++] = Slvs_MakePoint2d(306, g, 200, 21, 22);
sys.param[sys.params++] = Slvs_MakeParam(23, g, 30.0);
sys.entity[sys.entities++] = Slvs_MakeDistance(307, g, 200, 23);
/* And a complete circle, centered at point 306 with radius equal to
* distance 307. The normal is 102, the same as our workplane. */
sys.entity[sys.entities++] = Slvs_MakeCircle(402, g, 200,
306, 102, 307);
/* The length of our line segment is 30.0 units. */
sys.constraint[sys.constraints++] = Slvs_MakeConstraint(
1, g,
SLVS_C_PT_PT_DISTANCE,
200,
30.0,
301, 302, 0, 0);
/* And the distance from our line segment to the origin is 10.0 units. */
sys.constraint[sys.constraints++] = Slvs_MakeConstraint(
2, g,
SLVS_C_PT_LINE_DISTANCE,
200,
10.0,
101, 0, 400, 0);
/* And the line segment is vertical. */
sys.constraint[sys.constraints++] = Slvs_MakeConstraint(
3, g,
SLVS_C_VERTICAL,
200,
0.0,
0, 0, 400, 0);
/* And the distance from one endpoint to the origin is 15.0 units. */
sys.constraint[sys.constraints++] = Slvs_MakeConstraint(
4, g,
SLVS_C_PT_PT_DISTANCE,
200,
15.0,
301, 101, 0, 0);
#if 0
/* And same for the other endpoint; so if you add this constraint then
* the sketch is overconstrained and will signal an error. */
sys.constraint[sys.constraints++] = Slvs_MakeConstraint(
5, g,
SLVS_C_PT_PT_DISTANCE,
200,
18.0,
302, 101, 0, 0);
#endif /* 0 */
/* The arc and the circle have equal radius. */
sys.constraint[sys.constraints++] = Slvs_MakeConstraint(
6, g,
SLVS_C_EQUAL_RADIUS,
200,
0.0,
0, 0, 401, 402);
/* The arc has radius 17.0 units. */
sys.constraint[sys.constraints++] = Slvs_MakeConstraint(
7, g,
SLVS_C_DIAMETER,
200,
17.0*2,
0, 0, 401, 0);
/* If the solver fails, then ask it to report which constraints caused
* the problem. */
sys.calculateFaileds = 1;
/* And solve. */
Slvs_Solve(&sys, g);
if(sys.result == SLVS_RESULT_OKAY) {
printf("solved okay\n");
printf("line from (%.3f %.3f) to (%.3f %.3f)\n",
sys.param[7].val, sys.param[8].val,
sys.param[9].val, sys.param[10].val);
printf("arc center (%.3f %.3f) start (%.3f %.3f) finish (%.3f %.3f)\n",
sys.param[11].val, sys.param[12].val,
sys.param[13].val, sys.param[14].val,
sys.param[15].val, sys.param[16].val);
printf("circle center (%.3f %.3f) radius %.3f\n",
sys.param[17].val, sys.param[18].val,
sys.param[19].val);
printf("%d DOF\n", sys.dof);
} else {
int i;
printf("solve failed: problematic constraints are:");
for(i = 0; i < sys.faileds; i++) {
printf(" %d", sys.failed[i]);
}
printf("\n");
if(sys.result == SLVS_RESULT_INCONSISTENT) {
printf("system inconsistent\n");
} else {
printf("system nonconvergent\n");
}
}
}
int main()
{
sys.param = CheckMalloc(50*sizeof(sys.param[0]));
sys.entity = CheckMalloc(50*sizeof(sys.entity[0]));
sys.constraint = CheckMalloc(50*sizeof(sys.constraint[0]));
sys.failed = CheckMalloc(50*sizeof(sys.failed[0]));
sys.faileds = 50;
/*Example3d();*/
for(;;) {
Example2d();
sys.params = sys.constraints = sys.entities = 0;
break;
}
return 0;
}