From 0b0d1fcaf014f7ff63d2d3f5306301743984e606 Mon Sep 17 00:00:00 2001 From: "pre-commit-ci[bot]" <66853113+pre-commit-ci[bot]@users.noreply.github.com> Date: Mon, 24 Feb 2025 15:33:24 +0000 Subject: [PATCH] [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --- pycrostates/cluster/kmeans.py | 10 ++++++++-- pycrostates/segmentation/_base.py | 8 ++++++-- 2 files changed, 14 insertions(+), 4 deletions(-) diff --git a/pycrostates/cluster/kmeans.py b/pycrostates/cluster/kmeans.py index 926c1e82..7980b0e9 100644 --- a/pycrostates/cluster/kmeans.py +++ b/pycrostates/cluster/kmeans.py @@ -13,7 +13,11 @@ from .._typing import Picks from ..utils import _gev -from ..utils._checks import _check_n_jobs, _check_random_state, _check_type, _ensure_gfp_function +from ..utils._checks import ( + _check_n_jobs, + _check_random_state, + _check_type, +) from ..utils._docs import copy_doc, fill_doc from ..utils._logs import logger from ._base import _BaseCluster @@ -206,7 +210,9 @@ def fit( ) if not converged: continue - gev = _gev(data, maps, segmentation, ch_type=self.get_channel_types()[0]) + gev = _gev( + data, maps, segmentation, ch_type=self.get_channel_types()[0] + ) if best_gev is None or gev > best_gev: best_gev, best_maps, best_segmentation = ( gev, diff --git a/pycrostates/segmentation/_base.py b/pycrostates/segmentation/_base.py index aff38ba2..6205b6a8 100644 --- a/pycrostates/segmentation/_base.py +++ b/pycrostates/segmentation/_base.py @@ -160,7 +160,9 @@ def compute_parameters(self, norm_gfp: bool = True, return_dist: bool = False): # create a 1D view of the labels array labels = labels.reshape(-1) - gfp_function = _ensure_gfp_function(method='auto', ch_type=self._inst.info.get_channel_types()[0]) + gfp_function = _ensure_gfp_function( + method="auto", ch_type=self._inst.info.get_channel_types()[0] + ) gfp = gfp_function(data) if norm_gfp: labeled = np.argwhere(labels != -1) # ignore unlabeled segments @@ -177,7 +179,9 @@ def compute_parameters(self, norm_gfp: bool = True, return_dist: bool = False): labeled_gfp = gfp[arg_where][:, 0] # Correlation (i.e explained variance) dist_corr = _correlation( - labeled_tp, state, ignore_polarity=self._predict_parameters["ignore_polarity"] + labeled_tp, + state, + ignore_polarity=self._predict_parameters["ignore_polarity"], ) params[f"{state_name}_mean_corr"] = np.mean(dist_corr) # Global Explained Variance