Skip to content

Latest commit

 

History

History
133 lines (106 loc) · 2.94 KB

File metadata and controls

133 lines (106 loc) · 2.94 KB

中文文档

Description

Given an array of distinct integers nums and a target integer target, return the number of possible combinations that add up to target.

The answer is guaranteed to fit in a 32-bit integer.

 

Example 1:

Input: nums = [1,2,3], target = 4
Output: 7
Explanation:
The possible combination ways are:
(1, 1, 1, 1)
(1, 1, 2)
(1, 2, 1)
(1, 3)
(2, 1, 1)
(2, 2)
(3, 1)
Note that different sequences are counted as different combinations.

Example 2:

Input: nums = [9], target = 3
Output: 0

 

Constraints:

  • 1 <= nums.length <= 200
  • 1 <= nums[i] <= 1000
  • All the elements of nums are unique.
  • 1 <= target <= 1000

 

Follow up: What if negative numbers are allowed in the given array? How does it change the problem? What limitation we need to add to the question to allow negative numbers?

Solutions

Dynamic programming.

dp[i] represents the number of element combinations whose sum is i.

Python3

class Solution:
    def combinationSum4(self, nums: List[int], target: int) -> int:
        dp = [0] * (target + 1)
        dp[0] = 1
        for i in range(1, target + 1):
            for num in nums:
                if i >= num:
                    dp[i] += dp[i - num]
        return dp[-1]

Java

class Solution {
    public int combinationSum4(int[] nums, int target) {
        int[] dp = new int[target + 1];
        dp[0] = 1;
        for (int i = 1; i <= target; ++i) {
            for (int num : nums) {
                if (i >= num) {
                    dp[i] += dp[i - num];
                }
            }
        }
        return dp[target];
    }
}

C++

class Solution {
public:
    int combinationSum4(vector<int>& nums, int target) {
        vector<int> dp(target + 1);
        dp[0] = 1;
        for (int i = 1; i <= target; ++i) {
            for (int num : nums) {
                if (i >= num && dp[i - num] < INT_MAX - dp[i]) {
                    dp[i] += dp[i - num];
                }
            }
        }
        return dp[target];
    }
};

Go

func combinationSum4(nums []int, target int) int {
	dp := make([]int, target+1)
	dp[0] = 1
	for i := 1; i <= target; i++ {
		for _, num := range nums {
			if i >= num {
				dp[i] += dp[i-num]
			}
		}
	}
	return dp[target]
}

...