Given an array of distinct integers arr
, where arr
is sorted in ascending order, return the smallest index i
that satisfies arr[i] == i
. If there is no such index, return -1
.
Example 1:
Input: arr = [-10,-5,0,3,7]
Output: 3
Explanation: For the given array, arr[0] = -10, arr[1] = -5, arr[2] = 0, arr[3] = 3
, thus the output is 3.
Example 2:
Input: arr = [0,2,5,8,17]
Output: 0
Explanation: arr[0] = 0
, thus the output is 0.
Example 3:
Input: arr = [-10,-5,3,4,7,9] Output: -1 Explanation: There is no suchi
thatarr[i] == i
, thus the output is -1.
Constraints:
1 <= arr.length < 104
-109 <= arr[i] <= 109
Follow up: The
O(n)
solution is very straightforward. Can we do better?
Binary search.
class Solution:
def fixedPoint(self, arr: List[int]) -> int:
left, right = 0, len(arr) - 1
while left < right:
mid = (left + right) >> 1
if arr[mid] >= mid:
right = mid
else:
left = mid + 1
return left if arr[left] == left else -1
class Solution {
public int fixedPoint(int[] arr) {
int left = 0, right = arr.length - 1;
while (left < right) {
int mid = (left + right) >> 1;
if (arr[mid] >= mid) {
right = mid;
} else {
left = mid + 1;
}
}
return arr[left] == left ? left : -1;
}
}
class Solution {
public:
int fixedPoint(vector<int>& arr) {
int left = 0, right = arr.size() - 1;
while (left < right) {
int mid = left + right >> 1;
if (arr[mid] >= mid) {
right = mid;
} else {
left = mid + 1;
}
}
return arr[left] == left ? left : -1;
}
};
func fixedPoint(arr []int) int {
left, right := 0, len(arr)-1
for left < right {
mid := (left + right) >> 1
if arr[mid] >= mid {
right = mid
} else {
left = mid + 1
}
}
if arr[left] == left {
return left
}
return -1
}