-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconv_neural_network.py
204 lines (161 loc) · 6.36 KB
/
conv_neural_network.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import os
import pickle
import numpy as np
genre_to_label = {
"blues": 0,
"classical": 1,
"country": 2,
"disco": 3,
"hiphop": 4,
"jazz": 5,
"metal": 6,
"pop": 7,
"reggae": 8,
"rock": 9
}
def storeModel(model, name):
directory = "./models"
if not os.path.exists(directory):
os.makedirs(directory)
model.save("./models/"+ name + ".h5")
def prepareData():
pass
def musicModel():
pass
def imageModel():
pass
def makeModel(numberEpocs, modelName):
import keras
from keras import backend as K
from keras.models import Sequential, Model
from keras.layers import Dense, TimeDistributed, LSTM, Dropout, Activation, Flatten, Convolution2D, Conv2D, MaxPooling2D
from keras.layers.normalization import BatchNormalization
from keras.layers.advanced_activations import ELU
train_size = 0.7
validation_size = 0.2
test_size = 0.1
# Load data
data = []
labels = []
label_list = [name for name in os.listdir("./genres") if os.path.isdir("./genres/" + name)]
for label in label_list:
path = "./genres/" + label
for song in os.listdir(path):
if os.path.isfile(path + "/" + song) and song.endswith(".pickle"):
with open(path + "/" + song, 'rb') as f:
content = f.read()
squares = pickle.loads(content)
data += squares
labels += [genre_to_label[label] for i in range(len(squares))]
print("imported", len(labels), "song features")
data = np.asarray(data)
labels = np.asarray(labels)
print("labels shape", labels.shape)
print("data shape", data.shape)
dataLength = len(data)
# Shuffle data
permutation = np.random.permutation(dataLength)
data = data[permutation]
labels = labels[permutation]
# Split Train/Test
x_train = data[:int(train_size * dataLength)]
y_train = labels[:int(train_size * dataLength)]
x_validation = data[int(train_size * dataLength): int((train_size + validation_size) * dataLength)]
y_validation = labels[int(train_size * dataLength): int((train_size + validation_size) * dataLength)]
x_test = data[int((train_size + validation_size) * dataLength):]
y_test = labels[int((train_size + validation_size) * dataLength):]
batch_size = 128
num_classes = 10
epochs = numberEpocs
# input image dimensions
img_rows, img_cols = 128, 128
if K.image_data_format() == 'channels_first':
x_train = x_train.reshape(x_train.shape[0], 1, img_rows, img_cols)
x_validation = x_validation.reshape(x_validation.shape[0], 1, img_rows, img_cols)
x_test = x_test.reshape(x_test.shape[0], 1, img_rows, img_cols)
input_shape = (1, img_rows, img_cols)
else:
x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1)
x_validation = x_validation.reshape(x_validation.shape[0], img_rows, img_cols, 1)
x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1)
input_shape = (img_rows, img_cols, 1)
x_train = x_train.astype('float32')
x_validation = x_validation.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_validation /= 255
x_test /= 255
print('x_train shape:', x_train.shape)
print(x_train.shape[0], 'train samples')
print(x_validation.shape[0], 'validation samples')
print(x_test.shape[0], 'test samples')
# convert class vectors to binary class matrices
y_train = keras.utils.to_categorical(y_train, num_classes)
y_validation = keras.utils.to_categorical(y_validation, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)
if modelName == "music":
nb_filters = 32 # number of convolutional filters to use
pool_size = (2, 2) # size of pooling area for max pooling
kernel_size = (3, 3) # convolution kernel size
nb_layers = 4
model = Sequential()
model.add(Convolution2D(nb_filters, kernel_size[0], kernel_size[1],
border_mode='valid', input_shape=input_shape))
model.add(BatchNormalization())
model.add(Activation('relu'))
for layer in range(nb_layers-1):
model.add(Convolution2D(nb_filters, kernel_size[0], kernel_size[1]))
model.add(BatchNormalization())
model.add(ELU(alpha=1.0))
model.add(MaxPooling2D(pool_size=pool_size))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes))
model.add(Activation("softmax"))
model.compile(loss='categorical_crossentropy',
optimizer='adam',
metrics=['accuracy'])
#############################
if modelName == "image":
model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3),
activation='relu',
input_shape=input_shape))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='softmax'))
model.compile(loss=keras.losses.categorical_crossentropy,
optimizer=keras.optimizers.Adadelta(),
metrics=['accuracy'])
model.fit(x_train, y_train,
batch_size=batch_size,
epochs=epochs,
verbose=1,
validation_data=(x_validation, y_validation))
score = model.evaluate(x_test, y_test, verbose=1)
print('Test loss:', score[0])
print('Test accuracy:', score[1])
return model
if __name__ == "__main__":
import optparse
optparser = optparse.OptionParser()
optparser.add_option(
'-e', '--epocs', type='int', default=12,
help='number of epocs')
optparser.add_option(
'-m', '--model', type='string',
help='name of the model to store')
options, args = optparser.parse_args()
if not options.model:
print("No model provided")
optparser.print_help()
exit(-1)
model = makeModel(options.epocs, options.model)
storeModel(model, options.model)