-
Notifications
You must be signed in to change notification settings - Fork 0
/
cnn_cifar.py
210 lines (142 loc) · 5.77 KB
/
cnn_cifar.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import tensorflow as tf
import os
import pickle
import matplotlib.pyplot as plt
import numpy as np
class CifarLoader(object):
def __init__(self, source_files):
self._source = source_files
self._i = 0
self.images = None
self.labels = None
def load(self):
data = [unpickle(f) for f in self._source]
images = np.vstack([d[bytes('data', encoding='utf8')] for d in data])
n = len(images)
self.images = images.reshape(n, 3, 32, 32).transpose(
0, 2, 3, 1).astype(float) / 255
self.labels = one_hot(
np.hstack([d[bytes('labels', encoding='utf8')] for d in data]),
10
)
return self
def next_batch(self, batch_size):
x, y = self.images[self._i:self._i+batch_size], self.labels[self._i:self._i+batch_size]
self._i = (self._i + batch_size) % len(self.images)
return x, y
class CifarDataManager(object):
def __init__(self):
self.train = CifarLoader(
["data_batch_{}".format(i) for i in range(1, 6)]
).load()
self.test = CifarLoader(["test_batch"]).load()
def one_hot(vec, classes=10):
n = len(vec)
out = np.zeros((n, classes))
out[range(n), vec] = 1
return out
def unpickle(file):
with open(os.path.join(DATA_PATH, file), 'rb') as f:
d = pickle.load(f, encoding='bytes')
return d
def display_cifar(images, size):
n = len(images)
plt.figure()
plt.gca().set_axis_off()
im = np.vstack([np.hstack([images[np.random.choice(n)] for i in range(size)])
for i in range(size)])
plt.imshow(im)
plt.show()
def weight_variable(shape):
initial = tf.truncated_normal(shape=shape, stddev=0.1)
return tf.Variable(initial)
def bias_variable(shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial)
def conv2d(x, W):
return tf.nn.conv2d(x, W, strides=[1,1,1,1],
padding='SAME')
def max_pool_2x2(x):
return tf.nn.max_pool(x, ksize=[1,2,2,1],
strides=[1,2,2,1], padding='SAME')
def conv_layer(input, shape):
W = weight_variable(shape)
b = bias_variable([shape[3]])
return tf.nn.relu(conv2d(input, W) + b)
def full_layer(input, size):
insize = int(input.get_shape()[1])
W = weight_variable([insize, size])
b = bias_variable([size])
return tf.matmul(input, W) + b
def model1(x, keep_prob):
conv1 = conv_layer(x, shape=[5,5,3,32])
conv1_pool = max_pool_2x2(conv1)
conv2 = conv_layer(conv1_pool, shape=[5,5,32,64])
conv2_pool = max_pool_2x2(conv2)
conv2_flat = tf.reshape(conv2_pool, shape=[-1, 8*8*64])
full_1 = tf.nn.relu(full_layer(conv2_flat, 1024))
full_1_drop = tf.nn.dropout(full_1, keep_prob=keep_prob)
y_conv = full_layer(full_1_drop, 10)
return y_conv
def model2(x, keep_prob):
C1, C2, C3 = 30, 50, 80
F1 = 500
conv1_1 = conv_layer(x, shape=[3, 3, 3, C1])
conv1_2 = conv_layer(conv1_1, shape=[3, 3, C1, C1])
conv1_3 = conv_layer(conv1_2, shape=[3, 3, C1, C1])
conv1_pool = max_pool_2x2(conv1_3)
conv1_drop = tf. nn. dropout(conv1_pool, keep_prob=keep_prob)
conv2_1 = conv_layer(conv1_drop, shape=[3, 3, C1, C2])
conv2_2 = conv_layer(conv2_1, shape=[3, 3, C2, C2])
conv2_3 = conv_layer(conv2_2, shape=[3, 3, C2, C2])
conv2_pool = max_pool_2x2(conv2_3)
conv2_drop = tf.nn.dropout(conv2_pool, keep_prob=keep_prob)
conv3_1 = conv_layer(conv2_drop, shape=[3, 3, C2, C3])
conv3_2 = conv_layer(conv3_1, shape=[3, 3, C3, C3])
conv3_3 = conv_layer(conv3_2, shape=[3, 3, C3, C3])
conv3_pool = tf.nn.max_pool(conv3_3, ksize=[1, 8, 8, 1], strides=[1, 8, 8, 1], padding='SAME' )
conv3_flat = tf.reshape(conv3_pool, [- 1, C3])
conv3_drop = tf.nn.dropout(conv3_flat, keep_prob=keep_prob)
full1 = tf.nn.relu(full_layer(conv3_flat, F1))
full1_drop = tf.nn.dropout(full1, keep_prob=keep_prob)
y_conv = full_layer(full1_drop, 10)
return y_conv
def test(cifar_data, sess):
x = cifar_data.test.images.reshape(10, 1000, 32, 32, 3)
y = cifar_data.test.labels.reshape(10, 1000, 10)
acc = np.mean([sess.run(accuracy, feed_dict={X: x[i], Y: y[i], keep_prob: 1.0}) for i in range(10)])
print('test-accuracy: {:.4}%'.format(acc*100))
if __name__ == '__main__':
BATCH_SIZE = 100
STEPS = 2001
DATA_PATH = os.path.join(
os.path.dirname(__file__),
'data',
'cifar-10-batches-py'
)
cifar = CifarDataManager()
print("Number of train images: {}".format(len(cifar.train.images)))
print("Number of train labels: {}".format(len(cifar.train.labels)))
print("Number of test images: {}".format(len(cifar.test.images)))
print("Number of test images: {}".format(len(cifar.test.labels)))
images = d.train.images
display_cifar(images, 10)
X = tf.placeholder(tf.float32, shape=[None, 32, 32, 3])
Y = tf.placeholder(tf.float32, shape=[None, 10])
keep_prob = tf.placeholder(tf.float32)
Y_conv = model2(X, keep_prob)
cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=Y_conv, labels=Y))
train = tf.train.AdamOptimizer(1e-3).minimize(cross_entropy)
correct_prediction = tf.equal(tf.argmax(Y_conv, 1), tf.argmax(Y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for i in range(STEPS):
accr = []
batch = cifar.train.next_batch(BATCH_SIZE)
[_, acc] = sess.run([train, accuracy], feed_dict={X:batch[0], Y:batch[1], keep_prob:0.5})
accr.append(acc)
if i % 100 == 0:
print('step: {} train-accuracy: {:.4}%'.format(i, np.mean(acc)*100))
accr = []
test(cifar, sess)