-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathadvanced_optimization_example.py
130 lines (114 loc) · 4.08 KB
/
advanced_optimization_example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
from quantum_forge import QuantumForgeEnv, HardwareConstraints
from circuit_optimizer import QuantumCircuitOptimizer, OptimizationTarget
from qiskit import QuantumCircuit
import numpy as np
import matplotlib.pyplot as plt
def demonstrate_advanced_optimization():
print("\nDemonstrating advanced quantum circuit optimization:")
# Initialize hardware constraints
hardware_constraints = HardwareConstraints(
connectivity_map={
0: [1, 2],
1: [0, 3],
2: [0, 4],
3: [1, 5],
4: [2, 5],
5: [3, 4]
},
gate_times={
'x': 50,
'h': 50,
'cx': 300,
'rz': 0,
'ry': 50
},
error_rates={(i, j): 0.01 for i in range(6) for j in range(6) if abs(i-j) == 1},
max_parallel_gates=4
)
# Initialize circuit optimizer
optimizer = QuantumCircuitOptimizer(num_qubits=6, hardware_constraints=hardware_constraints)
# Example 1: Optimize QFT
print("\n1. Optimizing Quantum Fourier Transform:")
qft_circuit = optimizer.decompose_algorithm('qft', {'n_qubits': 6})
qft_resources = optimizer.estimate_resources(qft_circuit)
print("QFT Resources:")
for metric, value in qft_resources.items():
print(f"{metric}: {value}")
# Example 2: Optimize Grover's Algorithm
print("\n2. Optimizing Grover's Algorithm:")
# Create simple oracle for demonstration
oracle = QuantumCircuit(6)
oracle.x(0)
oracle.h(5)
oracle.mcx([0,1,2,3,4], 5)
oracle.h(5)
oracle.x(0)
grover_circuit = optimizer.decompose_algorithm(
'grover',
{
'oracle': oracle,
'iterations': 2
}
)
grover_resources = optimizer.estimate_resources(grover_circuit)
print("Grover Resources:")
for metric, value in grover_resources.items():
print(f"{metric}: {value}")
# Example 3: Optimize VQE
print("\n3. Optimizing VQE Circuit:")
vqe_circuit = optimizer.decompose_algorithm(
'vqe',
{
'depth': 3,
'hamiltonian': None # Simple demonstration without specific Hamiltonian
}
)
vqe_resources = optimizer.estimate_resources(vqe_circuit)
print("VQE Resources:")
for metric, value in vqe_resources.items():
print(f"{metric}: {value}")
# Compare optimization levels
print("\n4. Comparing Optimization Levels:")
# Create a test circuit
test_circuit = QuantumCircuit(6)
for i in range(6):
test_circuit.h(i)
for i in range(5):
test_circuit.cx(i, i+1)
for i in range(6):
test_circuit.rz(np.pi/4, i)
results = {}
for level in range(3):
optimized = optimizer.optimize_circuit(
test_circuit,
OptimizationTarget(optimization_level=level)
)
results[f"Level {level}"] = optimizer.estimate_resources(optimized)
# Plot comparison
metrics = ['depth', 'gate_count', 'two_qubit_gate_count']
fig, axes = plt.subplots(1, len(metrics), figsize=(15, 5))
for i, metric in enumerate(metrics):
values = [results[f"Level {level}"][metric] for level in range(3)]
axes[i].bar(range(3), values)
axes[i].set_title(metric)
axes[i].set_xlabel('Optimization Level')
axes[i].set_ylabel('Value')
plt.tight_layout()
plt.savefig('optimization_comparison.png')
plt.close()
print("\nOptimization comparison plot saved as 'optimization_comparison.png'")
# Verify circuit equivalence
print("\n5. Verifying Circuit Equivalence:")
level0 = optimizer.optimize_circuit(
test_circuit,
OptimizationTarget(optimization_level=0)
)
level2 = optimizer.optimize_circuit(
test_circuit,
OptimizationTarget(optimization_level=2)
)
is_equivalent = optimizer.verify_equivalence(level0, level2)
print(f"Circuits are functionally equivalent: {is_equivalent}")
if __name__ == "__main__":
demonstrate_advanced_optimization()
print("\nAdvanced optimization demonstration completed.")