-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
221 lines (187 loc) · 9.76 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
import pathlib, os
from torch.utils.data import DataLoader
from torch.nn import SyncBatchNorm
from datetime import datetime
from tqdm import tqdm
from shutil import copyfile
from utils.parser import train_parser
import models.backbone
from loss.semantic_seg import CrossEntropyLoss
import datasets
from optimizer.schedulers import *
from utils.metrics import *
from utils.distributed import init_process, clean_up
from utils import transforms
from utils.self_adapt_norm import reinit_alpha
import torch.distributed
import torch.multiprocessing as mp
from torch.utils.data.distributed import DistributedSampler
# We set a maximum image size which can be fit on the GPU, in case the image is larger, we first downsample it
# to then upsample the prediction back to the original resolution. This is especially required for high resolution
# Mapillary images
img_max_size = (1024, 2048)
def main(opts):
# Force disable distributed
opts.distributed = False if not torch.cuda.is_available() else opts.distributed
# Distributed training with multiple gpus
if opts.distributed:
opts.batch_size = opts.batch_size // opts.gpus
mp.spawn(train,
nprocs=opts.gpus,
args=(opts,))
# DataParallel with GPUs or CPU
else:
train(gpu=0, opts=opts)
def train(gpu: int,
opts):
# Create checkpoints directory
pathlib.Path(opts.checkpoints_root).mkdir(parents=True, exist_ok=True)
# Setup dataset
# Get target domain from dataset path
target_train = os.path.basename(opts.dataset_root)
target_val = os.path.basename(opts.val_dataset_root)
train_transforms = transforms.Compose([transforms.RandomResizedCrop(opts.crop_size),
transforms.RandomHFlip(),
transforms.RandGaussianBlur(),
transforms.ColorJitter(),
transforms.MaskGrayscale(),
transforms.ToTensor(),
transforms.IdsToTrainIds(source=target_train, target=target_train),
transforms.Normalize()])
val_transforms = transforms.Compose([transforms.ToTensor(),
transforms.IdsToTrainIds(source=target_train, target=target_val),
transforms.ImgResize(img_max_size),
transforms.Normalize()])
train_dataset = datasets.__dict__[target_train](root=opts.dataset_root,
split="train",
transforms=train_transforms)
val_dataset = datasets.__dict__[target_val](root=opts.val_dataset_root,
split="val",
transforms=val_transforms)
# Setup model
model = models.__dict__[opts.arch_type](backbone_name=opts.backbone_name,
num_classes=opts.num_classes,
alpha=opts.alpha,
dropout=opts.dropout,
update_source_bn=True)
if opts.distributed:
# Initialize process group
rank = init_process(opts, gpu)
# Convert batch normalization to SyncBatchNorm and setup CUDA
model = SyncBatchNorm.convert_sync_batchnorm(model)
torch.cuda.set_device(gpu)
model.cuda(gpu)
# Wrap model in DistributedDataParallel
model = torch.nn.parallel.DistributedDataParallel(module=model, device_ids=[gpu], find_unused_parameters=True)
# Setup data sampler and loader
train_sampler = DistributedSampler(dataset=train_dataset, num_replicas=opts.world_size, rank=rank, shuffle=True)
val_sampler = DistributedSampler(dataset=val_dataset, num_replicas=opts.world_size, rank=rank, shuffle=False)
else:
# Run on GPU if available else on CPU
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model = torch.nn.DataParallel(model).to(device)
train_sampler = None
val_sampler = None
# Set main process and device
main_process = not opts.distributed or (opts.distributed and rank == 0)
device = gpu if opts.distributed else device
# Add tensorboard writer and setup metric
time_stamp = datetime.now().strftime('%Y_%m_%d_%H_%M_%S')
if main_process:
print(f"Current training run {time_stamp} has started!")
iou_meter = runningScore(opts.num_classes)
alphas = np.round(np.linspace(0, 1, opts.num_alphas), 5) if opts.num_alphas > 1 else [opts.alpha]
# Setup dataloader
train_loader = DataLoader(train_dataset,
batch_size=opts.batch_size,
num_workers=opts.num_workers,
sampler=train_sampler,
shuffle=(train_sampler is None),
pin_memory=True if torch.cuda.is_available() else False)
val_loader = DataLoader(val_dataset,
batch_size=1,
num_workers=opts.num_workers,
sampler=val_sampler,
shuffle=False,
pin_memory=True if torch.cuda.is_available() else False)
# Setup loss
criterion = CrossEntropyLoss().to(device)
# Setup lr scheduler, optimizer and loss
optimizer = torch.optim.SGD(model.parameters(),
lr=opts.base_lr,
momentum=opts.momentum,
weight_decay=opts.weight_decay)
scheduler = get_scheduler(scheduler_type=opts.lr_scheduler,
optimizer=optimizer,
max_iter=len(train_loader) * opts.num_epochs + 1)
# Training
mean_iou_best_alphas = [0] * opts.num_alphas
model.train()
for epoch in tqdm(range(opts.num_epochs)):
if opts.distributed:
train_sampler.set_epoch(epoch)
for train_idx, (img_train, gt_train) in enumerate(train_loader):
# Put img and gt on GPU if available
img_train, gt_train = img_train.to(device), gt_train.to(device)
# Forward pass, backward pass and optimization
out_train = model(img=img_train)
loss_train = criterion(out_train['pred'], gt_train)
# Zero the parameter gradients
optimizer.zero_grad()
loss_train.backward()
optimizer.step()
scheduler.step()
# Validation
if epoch >= opts.validation_start and epoch % opts.validation_step == 0:
if main_process:
# Set model to eval
model.eval()
with torch.no_grad():
score_alphas, class_iou_epoch_alphas = [], []
for alpha_idx, alpha in enumerate(alphas):
reinit_alpha(model, alpha, device)
for val_idx, (img_val, gt_val) in enumerate(val_loader):
# Put img and gt on GPU if available
img_val, gt_val = img_val.to(device), gt_val.to(device)
# Forward pass and loss calculation
out_val = model(img=img_val)['pred']
# Upsample prediction to gt resolution
out_val = torch.nn.functional.interpolate(out_val,
size=gt_val.shape[-2:],
mode='bilinear')
# Update iou meter
iou_meter.update(gt_val.cpu().numpy(), torch.argmax(out_val, dim=1).cpu().numpy())
score, class_iou_epoch, _, _ = iou_meter.get_scores()
mean_iou_epoch = score['Mean IoU :']
score_alphas.append(mean_iou_epoch)
iou_meter.reset()
# Save model if mean iou higher than before
if mean_iou_epoch > mean_iou_best_alphas[alpha_idx]:
checkpoints_path = os.path.join(opts.checkpoints_root,
time_stamp + f'_alpha_{alpha}.pth')
if os.path.isfile(checkpoints_path):
os.remove(checkpoints_path)
torch.save(model.state_dict(), checkpoints_path)
mean_iou_best_alphas[alpha_idx] = mean_iou_epoch
# Switch model to train
model.train()
# Final result
if main_process and epoch == opts.num_epochs - 1:
print(f"alphas: {[i for i in alphas]}:")
print(f"IoUs: {mean_iou_best_alphas}")
checkpoints_path = os.path.join(opts.checkpoints_root, time_stamp + '.pth')
if os.path.isfile(checkpoints_path):
os.remove(checkpoints_path)
alpha_ind_max = torch.argmax(torch.tensor(mean_iou_best_alphas)).item()
alpha = alphas[alpha_ind_max]
checkpoints_alpha_path = os.path.join(opts.checkpoints_root,
time_stamp + f'_alpha_{alpha}.pth')
copyfile(checkpoints_alpha_path, checkpoints_path)
print(f"Saved checkpoint based on alpha = {alpha}")
print(f"Current training run {time_stamp} is finished!")
if opts.distributed:
clean_up()
if __name__ == '__main__':
args = train_parser()
print(args)
main(args)