forked from dathere/qsv
-
Notifications
You must be signed in to change notification settings - Fork 0
/
split.rs
351 lines (296 loc) · 13.3 KB
/
split.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
static USAGE: &str = r#"
Splits the given CSV data into chunks. It has three modes: by size (rowcount),
by number of chunks and by kb-size.
See `partition` command for splitting by a column value.
When splitting by size, the CSV data is split into chunks of the given number of
rows. The last chunk may have fewer rows if the number of records is not evenly
divisible by the given rowcount.
When splitting by number of chunks, the CSV data is split into the given number of
chunks. The number of rows in each chunk is determined by the number of records in
the CSV data and the number of desired chunks. If the number of records is not evenly
divisible by the number of chunks, the last chunk will have fewer records.
When splitting by kb-size, the CSV data is split into chunks of the given size in kilobytes.
The number of rows in each chunk may vary, but the size of each chunk will not exceed the
desired size.
Uses multithreading to go faster if the CSV has an index when splitting by size or
by number of chunks. Splitting by kb-size is always done sequentially with a single thread.
The default is to split by size with a chunk size of 500.
The files are written to the directory given with the name '{start}.csv',
where {start} is the index of the first record of the chunk (starting at 0).
Examples:
qsv split outdir --size 100 --filename chunk_{}.csv input.csv
# This will create files with names like chunk_0.csv, chunk_100.csv, etc.
# in the directory 'outdir', creating the directory if it does not exist.
qsv split outdir/subdir -s 100 --filename chunk_{}.csv --pad 5 input.csv
# This will create files with names like chunk_00000.csv, chunk_00100.csv, etc.
# in the directory 'outdir/subdir', creating the directories if they do not exist.
qsv split . -s 100 input.csv
# This will create files like 0.csv, 100.csv, etc. in the current directory.
qsv split outdir --kb-size 1000 input.csv
# This will create files with names like 0.csv, 994.csv, etc. in the directory
# 'outdir', creating the directory if it does not exist. Each file will be close
# to 1000KB in size.
cat in.csv | qsv split mysplitoutput -s 1000
qsv split outdir --chunks 10 input.csv
qsv split splitoutdir -c 10 -j 4 input.csv
For more examples, see https://github.com/dathere/qsv/blob/master/tests/test_split.rs.
Usage:
qsv split [options] (--size <arg> | --chunks <arg> | --kb-size <arg>) <outdir> [<input>]
qsv split --help
split arguments:
<outdir> The directory where the output files will be written.
If it does not exist, it will be created.
<input> The CSV file to read. If not given, input is read from
STDIN.
split options:
-s, --size <arg> The number of records to write into each chunk.
[default: 500]
-c, --chunks <arg> The number of chunks to split the data into.
This option is mutually exclusive with --size.
The number of rows in each chunk is determined by
the number of records in the CSV data and the number
of desired chunks. If the number of records is not evenly
divisible by the number of chunks, the last chunk will
have fewer records.
-k, --kb-size <arg> The size of each chunk in kilobytes. The number of rows
in each chunk may vary, but the size of each chunk will
not exceed the desired size.
This option is mutually exclusive with --size and --chunks.
-j, --jobs <arg> The number of splitting jobs to run in parallel.
This only works when the given CSV data has
an index already created. Note that a file handle
is opened for each job.
When not set, the number of jobs is set to the
number of CPUs detected.
--filename <filename> A filename template to use when constructing
the names of the output files. The string '{}'
will be replaced by the zero-based row number
of the first row in the chunk.
[default: {}.csv]
--pad <arg> The zero padding width that is used in the
generated filename.
[default: 0]
Common options:
-h, --help Display this message
-n, --no-headers When set, the first row will NOT be interpreted
as column names. Otherwise, the first row will
appear in all chunks as the header row.
-d, --delimiter <arg> The field delimiter for reading CSV data.
Must be a single character. (default: ,)
-Q, --quiet Do not display an output summary to stderr.
"#;
use std::{fs, io, path::Path};
use rayon::iter::{IntoParallelIterator, ParallelIterator};
use serde::Deserialize;
use crate::{
config::{Config, Delimiter},
index::Indexed,
util::{self, FilenameTemplate},
CliResult,
};
#[derive(Clone, Deserialize)]
struct Args {
arg_input: Option<String>,
arg_outdir: String,
flag_size: usize,
flag_chunks: Option<usize>,
flag_kb_size: Option<usize>,
flag_jobs: Option<usize>,
flag_filename: FilenameTemplate,
flag_pad: usize,
flag_no_headers: bool,
flag_delimiter: Option<Delimiter>,
flag_quiet: bool,
}
pub fn run(argv: &[&str]) -> CliResult<()> {
let args: Args = util::get_args(USAGE, argv)?;
if args.flag_size == 0 {
return fail_incorrectusage_clierror!("--size must be greater than 0.");
}
// check if outdir is set correctly
if Path::new(&args.arg_outdir).is_file() && args.arg_input.is_none() {
return fail_incorrectusage_clierror!("<outdir> is not specified or is a file.");
}
fs::create_dir_all(&args.arg_outdir)?;
if let Some(kb_size) = args.flag_kb_size {
args.split_by_kb_size(kb_size)
} else {
// we're splitting by rowcount or by number of chunks
match args.rconfig().indexed()? {
Some(idx) => args.parallel_split(&idx),
None => args.sequential_split(),
}
}
}
impl Args {
fn split_by_kb_size(&self, chunk_size: usize) -> CliResult<()> {
let rconfig = self.rconfig();
let mut rdr = rconfig.reader()?;
let headers = rdr.byte_headers()?.clone();
let header_byte_size = if self.flag_no_headers {
0
} else {
let mut headerbuf_wtr = csv::WriterBuilder::new().from_writer(vec![]);
headerbuf_wtr.write_byte_record(&headers)?;
// safety: we know the inner vec is valid
headerbuf_wtr.into_inner().unwrap().len()
};
let mut wtr = self.new_writer(&headers, 0, self.flag_pad)?;
let mut i = 0;
let mut num_chunks = 0;
let mut row = csv::ByteRecord::new();
let chunk_size_bytes = chunk_size * 1024;
let mut chunk_size_bytes_left = chunk_size_bytes - header_byte_size;
let mut not_empty = rdr.read_byte_record(&mut row)?;
let mut curr_size_bytes;
let mut next_size_bytes;
wtr.write_byte_record(&row)?;
while not_empty {
let mut buf_curr_wtr = csv::WriterBuilder::new().from_writer(vec![]);
buf_curr_wtr.write_byte_record(&row)?;
curr_size_bytes = buf_curr_wtr.into_inner().unwrap().len();
not_empty = rdr.read_byte_record(&mut row)?;
next_size_bytes = if not_empty {
let mut buf_next_wtr = csv::WriterBuilder::new().from_writer(vec![]);
buf_next_wtr.write_byte_record(&row)?;
buf_next_wtr.into_inner().unwrap().len()
} else {
0
};
if curr_size_bytes + next_size_bytes >= chunk_size_bytes_left {
wtr.flush()?;
wtr = self.new_writer(&headers, i, self.flag_pad)?;
chunk_size_bytes_left = chunk_size_bytes - header_byte_size;
num_chunks += 1;
}
if next_size_bytes > 0 {
wtr.write_byte_record(&row)?;
chunk_size_bytes_left -= curr_size_bytes;
i += 1;
}
}
wtr.flush()?;
if !self.flag_quiet {
eprintln!(
"Wrote chunk/s to '{}'. Size/chunk: <= {}KB; Num chunks: {}",
Path::new(&self.arg_outdir).canonicalize()?.display(),
chunk_size,
num_chunks + 1
);
}
Ok(())
}
fn sequential_split(&self) -> CliResult<()> {
let rconfig = self.rconfig();
let mut rdr = rconfig.reader()?;
let headers = rdr.byte_headers()?.clone();
#[allow(clippy::cast_precision_loss)]
let chunk_size = if let Some(flag_chunks) = self.flag_chunks {
let count = util::count_rows(&rconfig)?;
let chunk = flag_chunks;
if chunk == 0 {
return fail_incorrectusage_clierror!("--chunk must be greater than 0.");
}
(count as f64 / chunk as f64).ceil() as usize
} else {
self.flag_size
};
let mut wtr = self.new_writer(&headers, 0, self.flag_pad)?;
let mut i = 0;
let mut nchunks: usize = 0;
let mut row = csv::ByteRecord::new();
while rdr.read_byte_record(&mut row)? {
if i > 0 && i % chunk_size == 0 {
wtr.flush()?;
nchunks += 1;
wtr = self.new_writer(&headers, i, self.flag_pad)?;
}
wtr.write_byte_record(&row)?;
i += 1;
}
wtr.flush()?;
if !self.flag_quiet {
eprintln!(
"Wrote {} chunk/s to '{}'. Rows/chunk: {} Num records: {}",
nchunks + 1,
Path::new(&self.arg_outdir).canonicalize()?.display(),
chunk_size,
i
);
}
Ok(())
}
fn parallel_split(&self, idx: &Indexed<fs::File, fs::File>) -> CliResult<()> {
let chunk_size;
let idx_count = idx.count();
#[allow(clippy::cast_precision_loss)]
let nchunks = if let Some(flag_chunks) = self.flag_chunks {
chunk_size = (idx_count as f64 / flag_chunks as f64).ceil() as usize;
flag_chunks
} else {
chunk_size = self.flag_size;
util::num_of_chunks(idx_count as usize, self.flag_size)
};
if nchunks == 1 {
// there's only one chunk, we can just do a sequential split
// which has less overhead and better error handling
return self.sequential_split();
}
util::njobs(self.flag_jobs);
// safety: we cannot use ? here because we're in a closure
(0..nchunks).into_par_iter().for_each(|i| {
let conf = self.rconfig();
// safety: safe to unwrap because we know the file is indexed
let mut idx = conf.indexed().unwrap().unwrap();
// safety: the only way this can fail is if the file first row of the chunk
// is not a valid CSV record, which is impossible because we're reading
// from a file with a valid index
let headers = idx.byte_headers().unwrap();
let mut wtr = self
// safety: the only way this can fail is if we cannot create a file
.new_writer(headers, i * chunk_size, self.flag_pad)
.unwrap();
// safety: we know that there is more than one chunk, so we can safely
// seek to the start of the chunk
idx.seek((i * chunk_size) as u64).unwrap();
let mut write_row;
for row in idx.byte_records().take(chunk_size) {
write_row = row.unwrap();
wtr.write_byte_record(&write_row).unwrap();
}
// safety: safe to unwrap because we know the writer is a file
// the only way this can fail is if we cannot write to the file
wtr.flush().unwrap();
});
if !self.flag_quiet {
eprintln!(
"Wrote {} chunk/s to '{}'. Rows/chunk: {} Num records: {}",
nchunks,
Path::new(&self.arg_outdir).canonicalize()?.display(),
chunk_size,
idx_count
);
}
Ok(())
}
fn new_writer(
&self,
headers: &csv::ByteRecord,
start: usize,
width: usize,
) -> CliResult<csv::Writer<Box<dyn io::Write + 'static>>> {
let dir = Path::new(&self.arg_outdir);
let path = dir.join(self.flag_filename.filename(&format!("{start:0>width$}")));
let spath = Some(path.display().to_string());
let mut wtr = Config::new(spath.as_ref()).writer()?;
if !self.rconfig().no_headers {
wtr.write_record(headers)?;
}
Ok(wtr)
}
fn rconfig(&self) -> Config {
Config::new(self.arg_input.as_ref())
.delimiter(self.flag_delimiter)
.no_headers(self.flag_no_headers)
}
}