You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Collecting environment information...
PyTorch version: 2.5.1+cu124
Is debug build: False
CUDA used to build PyTorch: 12.4
ROCM used to build PyTorch: N/A
OS: Ubuntu 22.04.5 LTS (x86_64)
GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
Clang version: Could not collect
CMake version: Could not collect
Libc version: glibc-2.35
Nvidia driver version: 550.144.03
cuDNN version: Could not collect
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True
CPU:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Address sizes: 48 bits physical, 48 bits virtual
Byte Order: Little Endian
CPU(s): 192
On-line CPU(s) list: 0-191
Vendor ID: AuthenticAMD
Model name: AMD EPYC 7R13 Processor
CPU family: 25
Model: 1
Thread(s) per core: 2
Core(s) per socket: 48
Socket(s): 2
Stepping: 1
BogoMIPS: 5300.00
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf tsc_known_freq pni pclmulqdq monitor ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_legacy abm sse4a misalignsse 3dnowprefetch topoext perfctr_core invpcid_single ssbd ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 invpcid rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 clzero xsaveerptr rdpru wbnoinvd arat npt nrip_save vaes vpclmulqdq rdpid
Hypervisor vendor: KVM
Virtualization type: full
L1d cache: 3 MiB (96 instances)
L1i cache: 3 MiB (96 instances)
L2 cache: 48 MiB (96 instances)
L3 cache: 384 MiB (12 instances)
NUMA node(s): 2
NUMA node0 CPU(s): 0-47,96-143
NUMA node1 CPU(s): 48-95,144-191
Vulnerability Gather data sampling: Not affected
Vulnerability Itlb multihit: Not affected
Vulnerability L1tf: Not affected
Vulnerability Mds: Not affected
Vulnerability Meltdown: Not affected
Vulnerability Mmio stale data: Not affected
Vulnerability Reg file data sampling: Not affected
Vulnerability Retbleed: Not affected
Vulnerability Spec rstack overflow: Mitigation; safe RET, no microcode
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Mitigation; Retpolines, IBPB conditional, IBRS_FW, STIBP always-on, RSB filling, PBRSB-eIBRS Not affected
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Not affected
Versions of relevant libraries:
[pip3] flashinfer==0.1.6+cu124torch2.4
[pip3] numpy==1.26.4
[pip3] nvidia-cublas-cu12==12.4.5.8
[pip3] nvidia-cuda-cupti-cu12==12.4.127
[pip3] nvidia-cuda-nvrtc-cu12==12.4.127
[pip3] nvidia-cuda-runtime-cu12==12.4.127
[pip3] nvidia-cudnn-cu12==9.1.0.70
[pip3] nvidia-cufft-cu12==11.2.1.3
[pip3] nvidia-curand-cu12==10.3.5.147
[pip3] nvidia-cusolver-cu12==11.6.1.9
[pip3] nvidia-cusparse-cu12==12.3.1.170
[pip3] nvidia-ml-py==12.560.30
[pip3] nvidia-nccl-cu12==2.21.5
[pip3] nvidia-nvjitlink-cu12==12.4.127
[pip3] nvidia-nvtx-cu12==12.4.127
[pip3] onnx==1.17.0
[pip3] onnxruntime==1.20.1
[pip3] pyzmq==26.2.0
[pip3] sentence-transformers==3.3.1
[pip3] torch==2.5.1+cu124
[pip3] torchvision==0.20.1+cu124
[pip3] transformers==4.45.2
[pip3] triton==3.1.0
[conda] Could not collect
ROCM Version: Could not collect
Neuron SDK Version: N/A
vLLM Version: 0.7.0
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
GPU0 GPU1 GPU2 GPU3 GPU4 GPU5 GPU6 GPU7 CPU Affinity NUMA Affinity GPU NUMA ID
GPU0 X NV18 NV18 NV18 NV18 NV18 NV18 NV18 0-47,96-143 0 N/A
GPU1 NV18 X NV18 NV18 NV18 NV18 NV18 NV18 0-47,96-143 0 N/A
GPU2 NV18 NV18 X NV18 NV18 NV18 NV18 NV18 0-47,96-143 0 N/A
GPU3 NV18 NV18 NV18 X NV18 NV18 NV18 NV18 0-47,96-143 0 N/A
GPU4 NV18 NV18 NV18 NV18 X NV18 NV18 NV18 48-95,144-191 1 N/A
GPU5 NV18 NV18 NV18 NV18 NV18 X NV18 NV18 48-95,144-191 1 N/A
GPU6 NV18 NV18 NV18 NV18 NV18 NV18 X NV18 48-95,144-191 1 N/A
GPU7 NV18 NV18 NV18 NV18 NV18 NV18 NV18 X 48-95,144-191 1 N/A
Legend:
X = Self
SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
PIX = Connection traversing at most a single PCIe bridge
NV# = Connection traversing a bonded set of # NVLinks
model = LLM("/deepseekR1/model_weights", tensor_parallel_size=8, cpu_offload_gb=10, trust_remote_code=True)
Error stacktrace -
INFO PyProcess W-5226-model_code-stdout: (VllmWorkerProcess pid=5246) ERROR 01-29 09:20:28 multiproc_worker_utils.py:240] Traceback (most recent call last):
INFO PyProcess W-5226-model_code-stdout: (VllmWorkerProcess pid=5246) ERROR 01-29 09:20:28 multiproc_worker_utils.py:240] File "/usr/local/lib/python3.11/dist-packages/vllm/executor/multiproc_worker_utils.py", line 234, in _run_worker_process
INFO PyProcess W-5226-model_code-stdout: (VllmWorkerProcess pid=5246) ERROR 01-29 09:20:28 multiproc_worker_utils.py:240] output = run_method(worker, method, args, kwargs)
INFO PyProcess W-5226-model_code-stdout: (VllmWorkerProcess pid=5246) ERROR 01-29 09:20:28 multiproc_worker_utils.py:240] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
INFO PyProcess W-5226-model_code-stdout: (VllmWorkerProcess pid=5246) ERROR 01-29 09:20:28 multiproc_worker_utils.py:240] File "/usr/local/lib/python3.11/dist-packages/vllm/utils.py", line 2208, in run_method
INFO PyProcess W-5226-model_code-stdout: (VllmWorkerProcess pid=5246) ERROR 01-29 09:20:28 multiproc_worker_utils.py:240] return func(*args, **kwargs)
INFO PyProcess W-5226-model_code-stdout: (VllmWorkerProcess pid=5246) ERROR 01-29 09:20:28 multiproc_worker_utils.py:240] ^^^^^^^^^^^^^^^^^^^^^
INFO PyProcess W-5226-model_code-stdout: (VllmWorkerProcess pid=5246) ERROR 01-29 09:20:28 multiproc_worker_utils.py:240] File "/usr/local/lib/python3.11/dist-packages/torch/utils/_contextlib.py", line 116, in decorate_context
INFO PyProcess W-5226-model_code-stdout: (VllmWorkerProcess pid=5246) ERROR 01-29 09:20:28 multiproc_worker_utils.py:240] return func(*args, **kwargs)
INFO PyProcess W-5226-model_code-stdout: (VllmWorkerProcess pid=5246) ERROR 01-29 09:20:28 multiproc_worker_utils.py:240] ^^^^^^^^^^^^^^^^^^^^^
INFO PyProcess W-5226-model_code-stdout: (VllmWorkerProcess pid=5246) ERROR 01-29 09:20:28 multiproc_worker_utils.py:240] File "/usr/local/lib/python3.11/dist-packages/vllm/worker/worker.py", line 228, in determine_num_available_blocks
INFO PyProcess W-5226-model_code-stdout: (VllmWorkerProcess pid=5246) ERROR 01-29 09:20:28 multiproc_worker_utils.py:240] self.model_runner.profile_run()
INFO PyProcess W-5226-model_code-stdout: (VllmWorkerProcess pid=5246) ERROR 01-29 09:20:28 multiproc_worker_utils.py:240] File "/usr/local/lib/python3.11/dist-packages/torch/utils/_contextlib.py", line 116, in decorate_context
INFO PyProcess W-5226-model_code-stdout: (VllmWorkerProcess pid=5246) ERROR 01-29 09:20:28 multiproc_worker_utils.py:240] return func(*args, **kwargs)
INFO PyProcess W-5226-model_code-stdout: (VllmWorkerProcess pid=5246) ERROR 01-29 09:20:28 multiproc_worker_utils.py:240] ^^^^^^^^^^^^^^^^^^^^^
INFO PyProcess W-5226-model_code-stdout: (VllmWorkerProcess pid=5246) ERROR 01-29 09:20:28 multiproc_worker_utils.py:240] File "/usr/local/lib/python3.11/dist-packages/vllm/worker/model_runner.py", line 1235, in profile_run
INFO PyProcess W-5226-model_code-stdout: (VllmWorkerProcess pid=5246) ERROR 01-29 09:20:28 multiproc_worker_utils.py:240] self._dummy_run(max_num_batched_tokens, max_num_seqs)
INFO PyProcess W-5226-model_code-stdout: (VllmWorkerProcess pid=5246) ERROR 01-29 09:20:28 multiproc_worker_utils.py:240] File "/usr/local/lib/python3.11/dist-packages/vllm/worker/model_runner.py", line 1346, in _dummy_run
INFO PyProcess W-5226-model_code-stdout: (VllmWorkerProcess pid=5246) ERROR 01-29 09:20:28 multiproc_worker_utils.py:240] self.execute_model(model_input, kv_caches, intermediate_tensors)
INFO PyProcess W-5226-model_code-stdout: (VllmWorkerProcess pid=5246) ERROR 01-29 09:20:28 multiproc_worker_utils.py:240] File "/usr/local/lib/python3.11/dist-packages/torch/utils/_contextlib.py", line 116, in decorate_context
INFO PyProcess W-5226-model_code-stdout: (VllmWorkerProcess pid=5246) ERROR 01-29 09:20:28 multiproc_worker_utils.py:240] return func(*args, **kwargs)
INFO PyProcess W-5226-model_code-stdout: (VllmWorkerProcess pid=5246) ERROR 01-29 09:20:28 multiproc_worker_utils.py:240] ^^^^^^^^^^^^^^^^^^^^^
INFO PyProcess W-5226-model_code-stdout: (VllmWorkerProcess pid=5246) ERROR 01-29 09:20:28 multiproc_worker_utils.py:240] File "/usr/local/lib/python3.11/dist-packages/vllm/worker/model_runner_base.py", line 152, in _wrapper
INFO PyProcess W-5226-model_code-stdout: (VllmWorkerProcess pid=5246) ERROR 01-29 09:20:28 multiproc_worker_utils.py:240] raise type(err)(
INFO PyProcess W-5226-model_code-stdout: (VllmWorkerProcess pid=5246) ERROR 01-29 09:20:28 multiproc_worker_utils.py:240] ValueError: Error in model execution (input dumped to /tmp/err_execute_model_input_20250129-092028.pkl): functional_call got multiple values for keys ['mlp.experts.e_score_correction_bias', 'mlp.gate.e_score_correction_bias'], which are tied. Consider using tie_weights=False
Before submitting a new issue...
Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.
The text was updated successfully, but these errors were encountered:
gdagur
changed the title
[Bug]: Deepseek model load is failing
[Bug]: DeepseekR1 model load fails with error weights are tied
Jan 29, 2025
gdagur
changed the title
[Bug]: DeepseekR1 model load fails with error weights are tied
[Bug]: DeepseekR1 model load fails with weights tied error
Jan 29, 2025
Your current environment
Collecting environment information...
PyTorch version: 2.5.1+cu124
Is debug build: False
CUDA used to build PyTorch: 12.4
ROCM used to build PyTorch: N/A
OS: Ubuntu 22.04.5 LTS (x86_64)
GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
Clang version: Could not collect
CMake version: Could not collect
Libc version: glibc-2.35
Python version: 3.11.11 (main, Dec 4 2024, 08:55:07) [GCC 11.4.0] (64-bit runtime)
Python platform: Linux-5.10.230-223.885.amzn2.x86_64-x86_64-with-glibc2.35
Is CUDA available: True
CUDA runtime version: 12.4.131
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration:
GPU 0: NVIDIA H100 80GB HBM3
GPU 1: NVIDIA H100 80GB HBM3
GPU 2: NVIDIA H100 80GB HBM3
GPU 3: NVIDIA H100 80GB HBM3
GPU 4: NVIDIA H100 80GB HBM3
GPU 5: NVIDIA H100 80GB HBM3
GPU 6: NVIDIA H100 80GB HBM3
GPU 7: NVIDIA H100 80GB HBM3
Nvidia driver version: 550.144.03
cuDNN version: Could not collect
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True
CPU:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Address sizes: 48 bits physical, 48 bits virtual
Byte Order: Little Endian
CPU(s): 192
On-line CPU(s) list: 0-191
Vendor ID: AuthenticAMD
Model name: AMD EPYC 7R13 Processor
CPU family: 25
Model: 1
Thread(s) per core: 2
Core(s) per socket: 48
Socket(s): 2
Stepping: 1
BogoMIPS: 5300.00
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf tsc_known_freq pni pclmulqdq monitor ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_legacy abm sse4a misalignsse 3dnowprefetch topoext perfctr_core invpcid_single ssbd ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 invpcid rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 clzero xsaveerptr rdpru wbnoinvd arat npt nrip_save vaes vpclmulqdq rdpid
Hypervisor vendor: KVM
Virtualization type: full
L1d cache: 3 MiB (96 instances)
L1i cache: 3 MiB (96 instances)
L2 cache: 48 MiB (96 instances)
L3 cache: 384 MiB (12 instances)
NUMA node(s): 2
NUMA node0 CPU(s): 0-47,96-143
NUMA node1 CPU(s): 48-95,144-191
Vulnerability Gather data sampling: Not affected
Vulnerability Itlb multihit: Not affected
Vulnerability L1tf: Not affected
Vulnerability Mds: Not affected
Vulnerability Meltdown: Not affected
Vulnerability Mmio stale data: Not affected
Vulnerability Reg file data sampling: Not affected
Vulnerability Retbleed: Not affected
Vulnerability Spec rstack overflow: Mitigation; safe RET, no microcode
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Mitigation; Retpolines, IBPB conditional, IBRS_FW, STIBP always-on, RSB filling, PBRSB-eIBRS Not affected
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Not affected
Versions of relevant libraries:
[pip3] flashinfer==0.1.6+cu124torch2.4
[pip3] numpy==1.26.4
[pip3] nvidia-cublas-cu12==12.4.5.8
[pip3] nvidia-cuda-cupti-cu12==12.4.127
[pip3] nvidia-cuda-nvrtc-cu12==12.4.127
[pip3] nvidia-cuda-runtime-cu12==12.4.127
[pip3] nvidia-cudnn-cu12==9.1.0.70
[pip3] nvidia-cufft-cu12==11.2.1.3
[pip3] nvidia-curand-cu12==10.3.5.147
[pip3] nvidia-cusolver-cu12==11.6.1.9
[pip3] nvidia-cusparse-cu12==12.3.1.170
[pip3] nvidia-ml-py==12.560.30
[pip3] nvidia-nccl-cu12==2.21.5
[pip3] nvidia-nvjitlink-cu12==12.4.127
[pip3] nvidia-nvtx-cu12==12.4.127
[pip3] onnx==1.17.0
[pip3] onnxruntime==1.20.1
[pip3] pyzmq==26.2.0
[pip3] sentence-transformers==3.3.1
[pip3] torch==2.5.1+cu124
[pip3] torchvision==0.20.1+cu124
[pip3] transformers==4.45.2
[pip3] triton==3.1.0
[conda] Could not collect
ROCM Version: Could not collect
Neuron SDK Version: N/A
vLLM Version: 0.7.0
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
GPU0 GPU1 GPU2 GPU3 GPU4 GPU5 GPU6 GPU7 CPU Affinity NUMA Affinity GPU NUMA ID
GPU0 X NV18 NV18 NV18 NV18 NV18 NV18 NV18 0-47,96-143 0 N/A
GPU1 NV18 X NV18 NV18 NV18 NV18 NV18 NV18 0-47,96-143 0 N/A
GPU2 NV18 NV18 X NV18 NV18 NV18 NV18 NV18 0-47,96-143 0 N/A
GPU3 NV18 NV18 NV18 X NV18 NV18 NV18 NV18 0-47,96-143 0 N/A
GPU4 NV18 NV18 NV18 NV18 X NV18 NV18 NV18 48-95,144-191 1 N/A
GPU5 NV18 NV18 NV18 NV18 NV18 X NV18 NV18 48-95,144-191 1 N/A
GPU6 NV18 NV18 NV18 NV18 NV18 NV18 X NV18 48-95,144-191 1 N/A
GPU7 NV18 NV18 NV18 NV18 NV18 NV18 NV18 X 48-95,144-191 1 N/A
Legend:
X = Self
SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
PIX = Connection traversing at most a single PCIe bridge
NV# = Connection traversing a bonded set of # NVLinks
PYTORCH_LIBRARY_PATH=/usr/local/lib/python3.11/dist-packages/torch/lib
NVIDIA_VISIBLE_DEVICES=all
PYTORCH_PRECXX11=true
NVIDIA_REQUIRE_CUDA=cuda>=12.4 brand=tesla,driver>=470,driver<471 brand=unknown,driver>=470,driver<471 brand=nvidia,driver>=470,driver<471 brand=nvidiartx,driver>=470,driver<471 brand=geforce,driver>=470,driver<471 brand=geforcertx,driver>=470,driver<471 brand=quadro,driver>=470,driver<471 brand=quadrortx,driver>=470,driver<471 brand=titan,driver>=470,driver<471 brand=titanrtx,driver>=470,driver<471 brand=tesla,driver>=525,driver<526 brand=unknown,driver>=525,driver<526 brand=nvidia,driver>=525,driver<526 brand=nvidiartx,driver>=525,driver<526 brand=geforce,driver>=525,driver<526 brand=geforcertx,driver>=525,driver<526 brand=quadro,driver>=525,driver<526 brand=quadrortx,driver>=525,driver<526 brand=titan,driver>=525,driver<526 brand=titanrtx,driver>=525,driver<526 brand=tesla,driver>=535,driver<536 brand=unknown,driver>=535,driver<536 brand=nvidia,driver>=535,driver<536 brand=nvidiartx,driver>=535,driver<536 brand=geforce,driver>=535,driver<536 brand=geforcertx,driver>=535,driver<536 brand=quadro,driver>=535,driver<536 brand=quadrortx,driver>=535,driver<536 brand=titan,driver>=535,driver<536 brand=titanrtx,driver>=535,driver<536
NCCL_VERSION=2.21.5-1
NVIDIA_DRIVER_CAPABILITIES=compute,utility
VLLM_WORKER_MULTIPROC_METHOD=spawn
NVIDIA_PRODUCT_NAME=CUDA
TORCH_NCCL_BLOCKING_WAIT=0
CUDA_VERSION=12.4.1
PYTORCH_FLAVOR=cu124-precxx11
PYTORCH_VERSION=2.5.1
PYTORCH_KERNEL_CACHE_PATH=/tmp/.cache
TORCH_NCCL_ASYNC_ERROR_HANDLING=1
TORCH_NCCL_AVOID_RECORD_STREAMS=1
LD_LIBRARY_PATH=/usr/local/lib/python3.11/dist-packages/cv2/../../lib64:/usr/local/lib/python3.11/dist-packages/nvidia/cudnn/lib/
VLLM_NO_USAGE_STATS=1
NCCL_CUMEM_ENABLE=0
TORCHINDUCTOR_COMPILE_THREADS=1
CUDA_MODULE_LOADING=LAZY
Model Input Dumps
No response
🐛 Describe the bug
Below model load code fails with tied model weights error while loading deepseekR1 model weights-
https://huggingface.co/deepseek-ai/DeepSeek-R1
Error stacktrace -
Before submitting a new issue...
The text was updated successfully, but these errors were encountered: