|
| 1 | +package convert |
| 2 | + |
| 3 | +import ( |
| 4 | + "cmp" |
| 5 | + |
| 6 | + "github.com/ollama/ollama/llm" |
| 7 | +) |
| 8 | + |
| 9 | +type commandrModel struct { |
| 10 | + ModelParameters |
| 11 | + MaxPositionEmbeddings uint32 `json:"max_position_embeddings"` |
| 12 | + HiddenSize uint32 `json:"hidden_size"` |
| 13 | + HiddenLayers uint32 `json:"num_hidden_layers"` |
| 14 | + IntermediateSize uint32 `json:"intermediate_size"` |
| 15 | + NumAttentionHeads uint32 `json:"num_attention_heads"` |
| 16 | + NumKeyValueHeads uint32 `json:"num_key_value_heads"` |
| 17 | + LayerNormEPS float32 `json:"layer_norm_eps"` |
| 18 | + RopeTheta float32 `json:"rope_theta"` |
| 19 | + UseQKNorm bool `json:"use_qk_norm"` |
| 20 | + MaxLength uint32 `json:"model_max_length"` |
| 21 | + LogitScale float32 `json:"logit_scale"` |
| 22 | + NCtx uint32 `json:"n_ctx"` |
| 23 | +} |
| 24 | + |
| 25 | +var _ ModelConverter = (*commandrModel)(nil) |
| 26 | + |
| 27 | +func (p *commandrModel) KV(t *Tokenizer) llm.KV { |
| 28 | + kv := p.ModelParameters.KV(t) |
| 29 | + kv["general.architecture"] = "command-r" |
| 30 | + kv["general.name"] = "command-r" |
| 31 | + kv["command-r.context_length"] = cmp.Or(p.MaxLength, p.MaxPositionEmbeddings, p.NCtx) |
| 32 | + kv["command-r.embedding_length"] = p.HiddenSize |
| 33 | + kv["command-r.block_count"] = p.HiddenLayers |
| 34 | + kv["command-r.feed_forward_length"] = p.IntermediateSize |
| 35 | + kv["command-r.attention.head_count"] = p.NumAttentionHeads |
| 36 | + kv["command-r.attention.head_count_kv"] = p.NumKeyValueHeads |
| 37 | + kv["command-r.attention.layer_norm_epsilon"] = p.LayerNormEPS |
| 38 | + kv["command-r.rope.freq_base"] = p.RopeTheta |
| 39 | + kv["command-r.max_position_embeddings"] = cmp.Or(p.MaxLength, p.MaxPositionEmbeddings) |
| 40 | + kv["command-r.logit_scale"] = p.LogitScale |
| 41 | + kv["command-r.rope.scaling.type"] = "none" |
| 42 | + |
| 43 | + return kv |
| 44 | +} |
| 45 | + |
| 46 | +func (p *commandrModel) Tensors(ts []Tensor) []llm.Tensor { |
| 47 | + var out []llm.Tensor |
| 48 | + for _, t := range ts { |
| 49 | + out = append(out, llm.Tensor{ |
| 50 | + Name: t.Name(), |
| 51 | + Kind: t.Kind(), |
| 52 | + Shape: t.Shape(), |
| 53 | + WriterTo: t, |
| 54 | + }) |
| 55 | + } |
| 56 | + |
| 57 | + return out |
| 58 | +} |
| 59 | + |
| 60 | +func (p *commandrModel) Replacements() []string { |
| 61 | + return []string{ |
| 62 | + "self_attn.q_norm", "attn_q_norm", |
| 63 | + "self_attn.k_norm", "attn_k_norm", |
| 64 | + "model.layers", "blk", |
| 65 | + "input_layernorm", "attn_norm", |
| 66 | + "mlp.down_proj", "ffn_down", |
| 67 | + "mlp.gate_proj", "ffn_gate", |
| 68 | + "mlp.up_proj", "ffn_up", |
| 69 | + "self_attn.k_proj", "attn_k", |
| 70 | + "self_attn.o_proj", "attn_output", |
| 71 | + "self_attn.q_proj", "attn_q", |
| 72 | + "self_attn.v_proj", "attn_v", |
| 73 | + "model.norm", "output_norm", |
| 74 | + "model.embed_tokens", "token_embd", |
| 75 | + } |
| 76 | +} |
0 commit comments