forked from filecoin-project/go-hamt-ipld
-
Notifications
You must be signed in to change notification settings - Fork 0
/
hamt_bench_test.go
284 lines (249 loc) · 9.73 KB
/
hamt_bench_test.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
package hamt
import (
"context"
crand "crypto/rand"
"encoding/hex"
"fmt"
"math/rand"
"runtime"
"testing"
cbor "github.com/ipfs/go-ipld-cbor"
"github.com/stretchr/testify/require"
)
var debugHistogram = false
type rander struct {
r *rand.Rand
}
func (r *rander) randString() string {
buf := make([]byte, 18)
crand.Read(buf)
return hex.EncodeToString(buf)
}
func (r *rander) randValue() *CborByteArray {
buf := CborByteArray(make([]byte, 30))
crand.Read(buf)
return &buf
}
func BenchmarkSerializeNode(b *testing.B) {
r := rander{rand.New(rand.NewSource(1234))}
cs := cbor.NewCborStore(newMockBlocks())
n, err := NewNode(cs)
require.NoError(b, err)
for i := 0; i < 50; i++ {
err := n.Set(context.TODO(), r.randString(), r.randValue())
require.NoError(b, err)
}
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
_, err := cs.Put(context.TODO(), n)
require.NoError(b, err)
}
}
func BenchmarkGetNode(b *testing.B) {
r := rander{rand.New(rand.NewSource(1234))}
cs := cbor.NewCborStore(newMockBlocks())
n, err := NewNode(cs)
require.NoError(b, err)
for i := 0; i < 100000; i++ {
err := n.Set(context.Background(), r.randString(), r.randValue())
require.NoError(b, err)
}
c, err := cs.Put(context.Background(), n)
require.NoError(b, err)
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
var n Node
err := cs.Get(context.Background(), c, &n)
require.NoError(b, err)
}
}
type benchSetCase struct {
kcount int
bitwidth int
}
var benchSetCaseTable []benchSetCase
func init() {
kCounts := []int{
1,
5,
10,
50,
100,
500,
1000, // aka 1M
// 10000, // aka 10M -- you'll need a lot of RAM for this. Also, some patience.
}
bitwidths := []int{
3,
4,
5,
6,
7,
8,
}
// bucketsize-aka-arraywidth? maybe someday.
for _, c := range kCounts {
for _, bw := range bitwidths {
benchSetCaseTable = append(benchSetCaseTable, benchSetCase{kcount: c, bitwidth: bw})
}
}
}
// The benchmark results can be graphed. Here are some reasonable selections:
/*
benchdraw --filter=BenchmarkFill --plot=line --x=n "--y=blocks/entry" < sample > BenchmarkFill-blocks-per-entry-vs-scale.svg
benchdraw --filter=BenchmarkFill --plot=line --x=n "--y=bytes(blockstoreAccnt)/entry" < sample > BenchmarkFill-totalBytes-per-entry-vs-scale.svg
benchdraw --filter=BenchmarkSetBulk --plot=line --x=n "--y=addntlBlocks/addntlEntry" < sample > BenchmarkSetBulk-addntlBlocks-per-addntlEntry-vs-scale.svg
benchdraw --filter=BenchmarkSetIndividual --plot=line --x=n "--y=addntlBlocks/addntlEntry" < sample > BenchmarkSetIndividual-addntlBlocks-per-addntlEntry-vs-scale.svg
benchdraw --filter=BenchmarkFind --plot=line --x=n "--y=ns/op" < sample > BenchmarkFind-speed-vs-scale.svg
benchdraw --filter=BenchmarkFind --plot=line --x=n "--y=getEvts/find" < sample > BenchmarkFind-getEvts-vs-scale.svg
*/
// (The 'benchdraw' command alluded to here is https://github.com/cep21/benchdraw .)
// Histograms of blocksizes can be logged from some of the following functions, but are commented out.
// The main thing to check for in those is whether there are any exceptionally small blocks being produced:
// less than 64 bytes is a bit concerning because we assume there's some overhead per block in most operations (even if the exact amount may vary situationally).
// We do see some of these small blocks with small bitwidth parameters (e.g. 3), but almost none with larger bitwidth parameters.
// BenchmarkFill creates a large HAMT, and measures how long it takes to generate all of this many entries;
// the number of entries is varied in sub-benchmarks, denoted by their "n=" label component.
// Flush is done once for the entire structure, meaning the number of blocks generated per entry can be much fewer than 1.
//
// The number of blocks saved to the blockstore per entry is reported, and the total content size in bytes.
// The nanoseconds-per-op report on this function is not very useful, because the size of "op" varies with "n" between benchmarks.
//
// See "BenchmarkSet*" for a probe of how long it takes to set additional entries in an already-large hamt
// (this gives a more interesting and useful nanoseconds-per-op indicators).
func BenchmarkFill(b *testing.B) {
for _, t := range benchSetCaseTable {
b.Run(fmt.Sprintf("n=%dk/bitwidth=%d", t.kcount, t.bitwidth), func(b *testing.B) {
for i := 0; i < b.N; i++ {
r := rander{rand.New(rand.NewSource(int64(i)))}
blockstore := newMockBlocks()
n, err := NewNode(cbor.NewCborStore(blockstore), UseTreeBitWidth(t.bitwidth))
require.NoError(b, err)
// b.ResetTimer()
for j := 0; j < t.kcount*1000; j++ {
err := n.Set(context.Background(), r.randString(), r.randValue())
require.NoError(b, err)
}
err = n.Flush(context.Background())
require.NoError(b, err)
b.StopTimer()
if debugHistogram && i < 3 {
b.Logf("block size histogram: %v\n", blockstore.getBlockSizesHistogram())
}
if blockstore.stats.evtcntPutDup > 0 {
b.Logf("on round N=%d: blockstore stats: %#v\n", b.N, blockstore.stats) // note: must refer to this before doing `n.checkSize`; that function has many effects.
}
b.ReportMetric(float64(blockstore.stats.evtcntGet)/float64(t.kcount*1000), "getEvts/entry")
b.ReportMetric(float64(blockstore.stats.evtcntPut)/float64(t.kcount*1000), "putEvts/entry")
b.ReportMetric(float64(len(blockstore.data))/float64(t.kcount*1000), "blocks/entry")
binarySize, _ := n.checkSize(context.Background())
b.ReportMetric(float64(binarySize)/float64(t.kcount*1000), "bytes(hamtAccnt)/entry")
b.ReportMetric(float64(blockstore.totalBlockSizes())/float64(t.kcount*1000), "bytes(blockstoreAccnt)/entry")
b.StartTimer()
}
})
}
}
// BenchmarkSetBulk creates a large HAMT, then resets the timer, and does another 1000 inserts,
// measuring the time taken for this second batch of inserts.
// Flushing happens once after all 1000 inserts.
//
// The number of *additional* blocks per entry is reported.
// This number is usually less than one, because the bulk flush means changes might be amortized.
func BenchmarkSetBulk(b *testing.B) {
doBenchmarkSetSuite(b, false)
}
// BenchmarkSetIndividual is the same as BenchmarkSetBulk, but flushes more.
// Flush happens per insert.
//
// The number of *additional* blocks per entry is reported.
// Since we flush each insert individually, this number should be at least 1 --
// however, since we choose random keys, it can still turn out lower if keys happen to collide.
// (The Set method does not make it possible to adjust our denominator to compensate for this: it does not yield previous values nor indicators of prior presense.)
func BenchmarkSetIndividual(b *testing.B) {
doBenchmarkSetSuite(b, true)
}
func doBenchmarkSetSuite(b *testing.B, flushPer bool) {
for _, t := range benchSetCaseTable {
b.Run(fmt.Sprintf("n=%dk/bitwidth=%d", t.kcount, t.bitwidth), func(b *testing.B) {
for i := 0; i < b.N; i++ {
r := rander{rand.New(rand.NewSource(int64(i)))}
blockstore := newMockBlocks()
n, err := NewNode(cbor.NewCborStore(blockstore), UseTreeBitWidth(t.bitwidth))
require.NoError(b, err)
// Initial fill:
for j := 0; j < t.kcount*1000; j++ {
err := n.Set(context.Background(), r.randString(), r.randValue())
require.NoError(b, err)
}
require.NoError(b, n.Flush(context.Background()))
initalBlockstoreSize := len(blockstore.data)
b.ResetTimer()
blockstore.stats = blockstoreStats{}
// Additional inserts:
b.ReportAllocs()
for j := 0; j < 1000; j++ {
err := n.Set(context.Background(), r.randString(), r.randValue())
require.NoError(b, err)
if flushPer {
require.NoError(b, n.Flush(context.Background()))
}
}
if !flushPer {
require.NoError(b, n.Flush(context.Background()))
}
b.StopTimer()
if debugHistogram && i < 3 {
b.Logf("block size histogram: %v\n", blockstore.getBlockSizesHistogram())
}
if blockstore.stats.evtcntPutDup > 0 {
b.Logf("on round N=%d: blockstore stats: %#v\n", b.N, blockstore.stats)
}
b.ReportMetric(float64(blockstore.stats.evtcntGet)/float64(t.kcount*1000), "getEvts/entry")
b.ReportMetric(float64(blockstore.stats.evtcntPut)/float64(t.kcount*1000), "putEvts/entry")
b.ReportMetric(float64(len(blockstore.data)-initalBlockstoreSize)/float64(1000), "addntlBlocks/addntlEntry")
b.StartTimer()
}
})
}
}
func BenchmarkFind(b *testing.B) {
for _, t := range benchSetCaseTable {
b.Run(fmt.Sprintf("n=%dk/bitwidth=%d", t.kcount, t.bitwidth),
doBenchmarkEntriesCount(t.kcount*1000, t.bitwidth))
}
}
func doBenchmarkEntriesCount(num int, bitWidth int) func(b *testing.B) {
r := rander{rand.New(rand.NewSource(int64(num)))}
return func(b *testing.B) {
blockstore := newMockBlocks()
cs := cbor.NewCborStore(blockstore)
n, err := NewNode(cs, UseTreeBitWidth(bitWidth))
require.NoError(b, err)
var keys []string
for i := 0; i < num; i++ {
k := r.randString()
err := n.Set(context.TODO(), k, r.randValue())
require.NoError(b, err)
keys = append(keys, k)
}
require.NoError(b, n.Flush(context.TODO()))
c, err := cs.Put(context.TODO(), n)
require.NoError(b, err)
runtime.GC()
blockstore.stats = blockstoreStats{}
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
nd, err := LoadNode(context.TODO(), cs, c, UseTreeBitWidth(bitWidth))
require.NoError(b, err)
found, err := nd.Find(context.TODO(), keys[i%num], nil)
require.NoError(b, err)
require.True(b, found, "key not found")
}
b.ReportMetric(float64(blockstore.stats.evtcntGet)/float64(b.N), "getEvts/find")
b.ReportMetric(float64(blockstore.stats.evtcntPut)/float64(b.N), "putEvts/find") // surely this is zero, but for completeness.
}
}