forked from wujiyang/Face_Pytorch
-
Notifications
You must be signed in to change notification settings - Fork 1
/
train.py
257 lines (226 loc) · 12.6 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
#!/usr/bin/env python
# encoding: utf-8
'''
@author: wujiyang
@contact: [email protected]
@file: train.py.py
@time: 2018/12/21 17:37
@desc: train script for deep face recognition
'''
import os
import torch.utils.data
from torch.nn import DataParallel
from datetime import datetime
from backbone.mobilefacenet import MobileFaceNet
from backbone.cbam import CBAMResNet
from backbone.attention import ResidualAttentionNet_56, ResidualAttentionNet_92
from margin.ArcMarginProduct import ArcMarginProduct
from margin.MultiMarginProduct import MultiMarginProduct
from margin.CosineMarginProduct import CosineMarginProduct
from margin.InnerProduct import InnerProduct
from utils.visualize import Visualizer
from utils.logging import init_log
from dataset.casia_webface import CASIAWebFace
from dataset.lfw import LFW
from dataset.agedb import AgeDB30
from dataset.cfp import CFP_FP
from torch.optim import lr_scheduler
import torch.optim as optim
import time
from eval_lfw import evaluation_10_fold, getFeatureFromTorch
import numpy as np
import torchvision.transforms as transforms
import argparse
def train(args):
# gpu init
multi_gpus = False
if len(args.gpus.split(',')) > 1:
multi_gpus = True
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpus
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# log init
save_dir = os.path.join(args.save_dir, args.model_pre + args.backbone.upper() + '_' + datetime.now().strftime('%Y%m%d_%H%M%S'))
if os.path.exists(save_dir):
raise NameError('model dir exists!')
os.makedirs(save_dir)
logging = init_log(save_dir)
_print = logging.info
# dataset loader
transform = transforms.Compose([
transforms.ToTensor(), # range [0, 255] -> [0.0,1.0]
transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)) # range [0.0, 1.0] -> [-1.0,1.0]
])
# validation dataset
trainset = CASIAWebFace(args.train_root, args.train_file_list, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=args.batch_size,
shuffle=True, num_workers=8, drop_last=False)
# test dataset
lfwdataset = LFW(args.lfw_test_root, args.lfw_file_list, transform=transform)
lfwloader = torch.utils.data.DataLoader(lfwdataset, batch_size=128,
shuffle=False, num_workers=4, drop_last=False)
agedbdataset = AgeDB30(args.agedb_test_root, args.agedb_file_list, transform=transform)
agedbloader = torch.utils.data.DataLoader(agedbdataset, batch_size=128,
shuffle=False, num_workers=4, drop_last=False)
cfpfpdataset = CFP_FP(args.cfpfp_test_root, args.cfpfp_file_list, transform=transform)
cfpfploader = torch.utils.data.DataLoader(cfpfpdataset, batch_size=128,
shuffle=False, num_workers=4, drop_last=False)
# define backbone and margin layer
if args.backbone == 'MobileFace':
net = MobileFaceNet()
elif args.backbone == 'Res50_IR':
net = CBAMResNet(50, feature_dim=args.feature_dim, mode='ir')
elif args.backbone == 'SERes50_IR':
net = CBAMResNet(50, feature_dim=args.feature_dim, mode='ir_se')
elif args.backbone == 'Res100_IR':
net = CBAMResNet(100, feature_dim=args.feature_dim, mode='ir')
elif args.backbone == 'SERes100_IR':
net = CBAMResNet(100, feature_dim=args.feature_dim, mode='ir_se')
elif args.backbone == 'Attention_56':
net = ResidualAttentionNet_56(feature_dim=args.feature_dim)
elif args.backbone == 'Attention_92':
net = ResidualAttentionNet_92(feature_dim=args.feature_dim)
else:
print(args.backbone, ' is not available!')
if args.margin_type == 'ArcFace':
margin = ArcMarginProduct(args.feature_dim, trainset.class_nums, s=args.scale_size)
elif args.margin_type == 'MultiMargin':
margin = MultiMarginProduct(args.feature_dim, trainset.class_nums, s=args.scale_size)
elif args.margin_type == 'CosFace':
margin = CosineMarginProduct(args.feature_dim, trainset.class_nums, s=args.scale_size)
elif args.margin_type == 'Softmax':
margin = InnerProduct(args.feature_dim, trainset.class_nums)
elif args.margin_type == 'SphereFace':
pass
else:
print(args.margin_type, 'is not available!')
if args.resume:
print('resume the model parameters from: ', args.net_path, args.margin_path)
net.load_state_dict(torch.load(args.net_path)['net_state_dict'])
margin.load_state_dict(torch.load(args.margin_path)['net_state_dict'])
# define optimizers for different layer
criterion = torch.nn.CrossEntropyLoss().to(device)
optimizer_ft = optim.SGD([
{'params': net.parameters(), 'weight_decay': 5e-4},
{'params': margin.parameters(), 'weight_decay': 5e-4}
], lr=0.1, momentum=0.9, nesterov=True)
exp_lr_scheduler = lr_scheduler.MultiStepLR(optimizer_ft, milestones=[6, 11, 16], gamma=0.1)
if multi_gpus:
net = DataParallel(net).to(device)
margin = DataParallel(margin).to(device)
else:
net = net.to(device)
margin = margin.to(device)
best_lfw_acc = 0.0
best_lfw_iters = 0
best_agedb30_acc = 0.0
best_agedb30_iters = 0
best_cfp_fp_acc = 0.0
best_cfp_fp_iters = 0
total_iters = 0
vis = Visualizer(env=args.model_pre + args.backbone)
for epoch in range(1, args.total_epoch + 1):
exp_lr_scheduler.step()
# train model
_print('Train Epoch: {}/{} ...'.format(epoch, args.total_epoch))
net.train()
since = time.time()
for data in trainloader:
img, label = data[0].to(device), data[1].to(device)
optimizer_ft.zero_grad()
raw_logits = net(img)
output = margin(raw_logits, label)
total_loss = criterion(output, label)
total_loss.backward()
optimizer_ft.step()
total_iters += 1
# print train information
if total_iters % 100 == 0:
# current training accuracy
_, predict = torch.max(output.data, 1)
total = label.size(0)
correct = (np.array(predict.cpu()) == np.array(label.data.cpu())).sum()
time_cur = (time.time() - since) / 100
since = time.time()
vis.plot_curves({'softmax loss': total_loss.item()}, iters=total_iters, title='train loss',
xlabel='iters', ylabel='train loss')
vis.plot_curves({'train accuracy': correct / total}, iters=total_iters, title='train accuracy', xlabel='iters',
ylabel='train accuracy')
_print("Iters: {:0>6d}/[{:0>2d}], loss: {:.4f}, train_accuracy: {:.4f}, time: {:.2f} s/iter, learning rate: {}".format(total_iters, epoch, total_loss.item(), correct/total, time_cur, exp_lr_scheduler.get_lr()[0]))
# save model
if total_iters % args.save_freq == 0:
msg = 'Saving checkpoint: {}'.format(total_iters)
_print(msg)
if multi_gpus:
net_state_dict = net.module.state_dict()
margin_state_dict = margin.module.state_dict()
else:
net_state_dict = net.state_dict()
margin_state_dict = margin.state_dict()
if not os.path.exists(save_dir):
os.mkdir(save_dir)
torch.save({
'iters': total_iters,
'net_state_dict': net_state_dict},
os.path.join(save_dir, 'Iter_%06d_net.ckpt' % total_iters))
torch.save({
'iters': total_iters,
'net_state_dict': margin_state_dict},
os.path.join(save_dir, 'Iter_%06d_margin.ckpt' % total_iters))
# test accuracy
if total_iters % args.test_freq == 0:
# test model on lfw
net.eval()
getFeatureFromTorch('./result/cur_lfw_result.mat', net, device, lfwdataset, lfwloader)
lfw_accs = evaluation_10_fold('./result/cur_lfw_result.mat')
_print('LFW Ave Accuracy: {:.4f}'.format(np.mean(lfw_accs) * 100))
if best_lfw_acc <= np.mean(lfw_accs) * 100:
best_lfw_acc = np.mean(lfw_accs) * 100
best_lfw_iters = total_iters
# test model on AgeDB30
getFeatureFromTorch('./result/cur_agedb30_result.mat', net, device, agedbdataset, agedbloader)
age_accs = evaluation_10_fold('./result/cur_agedb30_result.mat')
_print('AgeDB-30 Ave Accuracy: {:.4f}'.format(np.mean(age_accs) * 100))
if best_agedb30_acc <= np.mean(age_accs) * 100:
best_agedb30_acc = np.mean(age_accs) * 100
best_agedb30_iters = total_iters
# test model on CFP-FP
getFeatureFromTorch('./result/cur_cfpfp_result.mat', net, device, cfpfpdataset, cfpfploader)
cfp_accs = evaluation_10_fold('./result/cur_cfpfp_result.mat')
_print('CFP-FP Ave Accuracy: {:.4f}'.format(np.mean(cfp_accs) * 100))
if best_cfp_fp_acc <= np.mean(cfp_accs) * 100:
best_cfp_fp_acc = np.mean(cfp_accs) * 100
best_cfp_fp_iters = total_iters
_print('Current Best Accuracy: LFW: {:.4f} in iters: {}, AgeDB-30: {:.4f} in iters: {} and CFP-FP: {:.4f} in iters: {}'.format(
best_lfw_acc, best_lfw_iters, best_agedb30_acc, best_agedb30_iters, best_cfp_fp_acc, best_cfp_fp_iters))
vis.plot_curves({'lfw': np.mean(lfw_accs), 'agedb-30': np.mean(age_accs), 'cfp-fp': np.mean(cfp_accs)}, iters=total_iters,
title='test accuracy', xlabel='iters', ylabel='test accuracy')
net.train()
_print('Finally Best Accuracy: LFW: {:.4f} in iters: {}, AgeDB-30: {:.4f} in iters: {} and CFP-FP: {:.4f} in iters: {}'.format(
best_lfw_acc, best_lfw_iters, best_agedb30_acc, best_agedb30_iters, best_cfp_fp_acc, best_cfp_fp_iters))
print('finishing training')
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='PyTorch for deep face recognition')
parser.add_argument('--train_root', type=str, default='/media/ramdisk/msra_align_112', help='train image root')
parser.add_argument('--train_file_list', type=str, default='/media/ramdisk/msra_align_train.list', help='train list')
parser.add_argument('--lfw_test_root', type=str, default='/media/sda/lfw/lfw_align_112', help='lfw image root')
parser.add_argument('--lfw_file_list', type=str, default='/media/sda/lfw/pairs.txt', help='lfw pair file list')
parser.add_argument('--agedb_test_root', type=str, default='/media/sda/AgeDB-30/agedb30_align_112', help='agedb image root')
parser.add_argument('--agedb_file_list', type=str, default='/media/sda/AgeDB-30/agedb_30_pair.txt', help='agedb pair file list')
parser.add_argument('--cfpfp_test_root', type=str, default='/media/sda/CFP-FP/cfp_fp_aligned_112', help='agedb image root')
parser.add_argument('--cfpfp_file_list', type=str, default='/media/sda/CFP-FP/cfp_fp_pair.txt', help='agedb pair file list')
parser.add_argument('--backbone', type=str, default='SERes100_IR', help='MobileFace, Res50_IR, SERes50_IR, Res100_IR, SERes100_IR, Attention_56, Attention_92')
parser.add_argument('--margin_type', type=str, default='ArcFace', help='ArcFace, CosFace, SphereFace, MultiMargin, Softmax')
parser.add_argument('--feature_dim', type=int, default=512, help='feature dimension, 128 or 512')
parser.add_argument('--scale_size', type=float, default=32.0, help='scale size')
parser.add_argument('--batch_size', type=int, default=200, help='batch size')
parser.add_argument('--total_epoch', type=int, default=18, help='total epochs')
parser.add_argument('--save_freq', type=int, default=3000, help='save frequency')
parser.add_argument('--test_freq', type=int, default=3000, help='test frequency')
parser.add_argument('--resume', type=int, default=False, help='resume model')
parser.add_argument('--net_path', type=str, default='', help='resume model')
parser.add_argument('--margin_path', type=str, default='', help='resume model')
parser.add_argument('--save_dir', type=str, default='./model', help='model save dir')
parser.add_argument('--model_pre', type=str, default='SERES100_', help='model prefix')
parser.add_argument('--gpus', type=str, default='0,1,2,3', help='model prefix')
args = parser.parse_args()
train(args)