-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathnets.py
143 lines (121 loc) · 5.97 KB
/
nets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import numpy as np
import torch
import torch.nn as nn
def fc_block(in_features, out_features, dropout_prob=None):
layers = [nn.Linear(in_features, out_features)]
if dropout_prob:
layers.append(nn.Dropout(p=dropout_prob))
layers.append(nn.ReLU())
return nn.Sequential(*layers)
def fc_net(num_layers, in_size, hidden_size, out_proj_size=None, dropout_prob=None):
layers = [
fc_block(in_size if l == 0 else hidden_size, hidden_size, dropout_prob)
for l in range(num_layers)]
if out_proj_size is not None:
layers.append(nn.Linear(hidden_size, out_proj_size))
return nn.Sequential(*layers)
class CNNEncoder(nn.Module):
def __init__(self, img_dim_hw, output_dim, embed_dim=128, stride=2, kernel_size=4, num_conv_layers=4):
super(CNNEncoder, self).__init__()
# Should be able to get exactly to the desired output size with some number of layers
# Assumes stride=2, kernel_size=4, padding=1
assert img_dim_hw[0] % 2**num_conv_layers == 0
assert img_dim_hw[1] % 2**num_conv_layers == 0
self.layers = []
self.layers.append(nn.Conv2d(3, embed_dim, kernel_size, stride=stride, padding=1))
self.layers.append(nn.ReLU())
for _ in range(num_conv_layers - 1):
self.layers.append(torch.nn.Conv2d(embed_dim, embed_dim, kernel_size, stride=stride, padding=1))
self.layers.append(nn.ReLU())
self.layers.append(nn.Linear(embed_dim, output_dim))
self.layers.append(nn.ReLU())
self.layers = nn.ModuleList(self.layers)
# input \in B x T x H x W x 3
# output \in B x T x U x V x E
def forward(self, x):
batch_size = x.shape[0]
num_frames = x.shape[1]
# nn.Conv2d expects B x C x H x W, so collapse frames and batches, and swap channel
x = x.flatten(0, 1) # B*T x H x W x C
x = x.moveaxis(-1, 1) # B*T x C x H x W
for layer in self.layers[:-2]:
new_x = layer(x)
x = new_x
# Move back from ((B*T) x C x P x P) to (B x T x P x P x C)
x = x.moveaxis(1, -1) # B*T x H x W x C
x = x.reshape((batch_size, num_frames) + x.shape[1:])
for layer in self.layers[-2:]:
x = layer(x)
return x
# Input should have the format seq_len x batch_size x d_model
class TransformerBlock(nn.Module):
def __init__(self, d_model: int, nhead: int, dim_feedforward: int = 2048, dropout: float = 0.1,
activation = nn.functional.relu, layer_norm_eps: float = 1e-5, norm_first: bool = False) -> None:
super(TransformerBlock, self).__init__()
self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
# Implementation of Feedforward model
self.linear1 = nn.Linear(d_model, dim_feedforward)
self.dropout = nn.Dropout(dropout)
self.linear2 = nn.Linear(dim_feedforward, d_model)
self.norm_first = norm_first
self.norm1 = nn.LayerNorm(d_model, eps=layer_norm_eps)
self.norm2 = nn.LayerNorm(d_model, eps=layer_norm_eps)
self.dropout1 = nn.Dropout(dropout)
self.dropout2 = nn.Dropout(dropout)
if isinstance(activation, str):
if activation == 'relu':
self.activation = nn.functional.relu
elif activation == 'gelu':
self.activation = nn.functional.gelu
else:
raise ValueError("activation should be relu/gelu, not {}".format(activation))
else:
self.activation = activation
def forward(self, x: torch.Tensor) -> torch.Tensor:
if self.norm_first:
x = x + self._sa_block(self.norm1(x))
x = x + self._ff_block(self.norm2(x))
else:
x = self.norm1(x + self._sa_block(x))
x = self.norm2(x + self._ff_block(x))
return x
# self-attention block
def _sa_block(self, x: torch.Tensor) -> torch.Tensor:
x = self.self_attn(x, x, x, need_weights=False)[0]
return self.dropout1(x)
# feed forward block
def _ff_block(self, x: torch.Tensor) -> torch.Tensor:
x = self.linear2(self.dropout(self.activation(self.linear1(x))))
return self.dropout2(x)
class QueryDecoder(nn.Module):
def __init__(
self, input_size, query_size, hidden_size, output_size, num_hidden_layers,
query_scale=1.0, output_scale=1.0):
super(QueryDecoder, self).__init__()
# we handle arbitrary output shapes, or just a scalar number of output dimensions
output_size = [output_size] if np.isscalar(output_size) else output_size
self.output_size = output_size
num_output_dims = np.prod(output_size)
# add the main fully connected layers
next_input_size = input_size + query_size
hidden_layers = []
for _ in range(num_hidden_layers):
hidden_layers.append(fc_block(next_input_size, hidden_size))
next_input_size = hidden_size
self.hiddens = nn.Sequential(*hidden_layers)
# final linear projection to the target number of output dimensions
self.final_project = nn.Linear(next_input_size, num_output_dims)
# register buffers to store the query and output scale factors
self.register_buffer('query_scale', torch.tensor(query_scale))
self.register_buffer('output_scale', torch.tensor(output_scale))
def forward(self, z, query):
# z.shape (B, ..., L), query.shape (B, ..., N, Q)
query = query * self.query_scale
num_queries = query.shape[-2]
# replicate z over all queries (B, ..., L) --> (B, ..., N, L)
z_query_tiled = torch.stack([z]*num_queries, -2)
out = torch.cat([z_query_tiled, query], -1) # concatenate z and query on last axis
out = self.hiddens(out) # apply main hidden layers
out = self.final_project(out) # apply final output projection
out = out.unflatten(-1, self.output_size) # reshape last axis to target output_size
return out * self.output_scale