-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsmr-mcs.jl
47 lines (36 loc) · 1.19 KB
/
smr-mcs.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
##### activate environment #####
using Pkg
Pkg.activate(pwd())
using Statistics
inputpath = "_input"
outputpath = "_output"
##### load functions #####
@info("Loading functions")
include("functions.jl");
##### load project data #####
@info("loading data")
include("data.jl");
##### further simulation data #####
# number of Monte Carlo runs
n = Int64(1e6);
# wholesale electricity price [USD/MWh], lower and upper bound of rand variable
electricity_price = [52.2, 95.8];
# weighted average cost of capital (WACC), lower and upper bound of rand variable
wacc = [0.04, 0.10];
# scaling
# scaling options
opts_scaling = ["manufacturer", "roulstone", "rothwell", "uniform"];
# scaling parameter, lower and upper bound of random variable
scaling = [0.20, 0.75];
# choose scaling option
if @isdefined(par_job) == true
# read scaling option from job script parameter
opt_scaling = opts_scaling[par_job];
@info("using scaling option $opt_scaling")
else
# define scaling option locally
opt_scaling = opts_scaling[2];
end
##### run simulation #####
@info("running simulation")
include("run_simulation.jl")