-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathAGSVD.R
173 lines (158 loc) · 6.23 KB
/
AGSVD.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
##############################################################################
##############################################################################
AGSVD = function(X, rank_k=2, A, sigma, ku=50, kv=100, niter=100, err=0.0001){
# --------------------------------------------------------------------------
# [n,p] = dim(X), n is the number of samples and p is the number of features
# A: PPI network of genes
# sigma parameter
# --------------------------------------------------------------------------
# Output
n = nrow(X)
p = ncol(X)
U = matrix(0,n,rank_k); D = rep(0,rank_k); V = matrix(0,p,rank_k)
objs = c(); # L = diag(apply(A,1,sum)) - A
tX = X
for(i in 1:rank_k){
out = rank1.AGSVD(tX, A, sigma, ku, kv, niter, err)
U[,i] = out$u; V[,i] = out$v; D[i] = out$d;
temp_objs = norm(tX,"F")^2 - (out$ds)^2
# 2019-7-19: ||X - duv||_F^2 + sigma*|u|^T*L*|u|
# L = diag(apply(A,1,sum)) - A
# sum1 = norm(tX - c(out$d)*out$u%*%t(out$v),"F")^2
# sum2 = sigma*t(abs(out$v))%*%L%*%abs(out$v)
# temp_objs = sum1 + sum2
objs = c(objs,temp_objs)
# update X
tX = tX - c(out$d)*out$u%*%t(out$v)
}
return (list(U=U, D=D, V=V, objs = objs))
}
##############################################################################
##############################################################################
rank1.AGSVD = function(X, A, sigma, ku, kv=2, niter=1000, err=0.0001){
# ------------------
# Initialize u and v
Res = svd(X,1,1)
u0 = Res$u # v0 = v0/norm(v0,'E')
v0 = Res$v
ds = c()
# ------------------
# Iterative algorithm to solve u and v values
for (i in 1:niter){
# update u and v
# u = X%*%v0; u = u/norm(u,'E') # for samples
u = L0project(X%*%v0, ku)
v = AG_project(t(X)%*%u, v0, kv, A, sigma) #for genes
d = t(u)%*%X%*%v
ds = c(ds,d)
# Termination condition
if ((norm(u - u0,'2')<= err)&(norm(v - v0,'2')<= err)){break}
else {
u0 = u;v0 = v}
}
return (list(u=u, v=v, d=d, ds=ds))
}
##############################################################################
##############################################################################
# Sparse Graph-regularized Penalty With Absolute Operator
AG_project = function(z, v0, k, A, sigma){
#------------------------
v0 = abs(v0)
v = abs(z) + sigma*A%*%v0
v = select2(v,k)
#------------------------
if(sum(v^2)==0){return(rep(0,length(v)))}
else{
v = v/sqrt(sum(v^2))
v = sign(z)*v
return(v)}
}
##############################################################################
##############################################################################
# L0 constrained SVD project function
L0project = function(z, k){
absz = abs(z);
u = select2(absz,k)
if(sum(u^2)==0){return(rep(0,length(u)))}
else{
u = u/sqrt(sum(u^2))
u = sign(z)*u
return(u)}
}
# An auxiliary function
select2 = function(x, k){
if(k>=length(x)) return(x)
x[-order(x,decreasing=T)[1:k]] = 0
return(x)
}
##############################################################################
##############################################################################
NetworkEnrichment.of.module = function(PPINetwork,mgIDs){
# module gene IDs
B = PPINetwork
geneNum = dim(B)[1]
Num.mgIDs.edges = sum(B[mgIDs,mgIDs])/2
q = Num.mgIDs.edges-1
m = sum(B)/2
n = geneNum*(geneNum-1)/2-m
k = length(mgIDs)*(length(mgIDs)-1)/2
PValue = phyper(q, m, n, k, lower.tail = F)
FC = (Num.mgIDs.edges/k)/(m/(m+n))
return(c(length(mgIDs),Num.mgIDs.edges,FC,PValue))
}
##############################################################################
##############################################################################
getTable = function(out,METABRIC.gene.network){
V1 = out$V; ds = out$D; moduleEdgeTable = NULL
for(i in 1:ncol(V1)){
M1.geneIDs = which(V1[,i]!=0)
t1 = NetworkEnrichment.of.module(METABRIC.gene.network,M1.geneIDs)
t2 = c(ds[i],t1)
moduleEdgeTable = cbind(moduleEdgeTable,t2)
}
row.names(moduleEdgeTable) = c("d","numGenes","numEdges","FC","Pvalue")
colnames(moduleEdgeTable) = paste("module",1:ncol(V1))
print(round(moduleEdgeTable,2))
return(moduleEdgeTable)
}
##############################################################################
##############################################################################
getNMI.avg = function(out,yanData){
U1 = out$U[,c(1,2)]
res = matrix(rep(0,50),ncol=1)
for(i in 1:50){
set.seed(i)
cl <- kmeans(U1, length(unique(yanData$sample.group)), nstart = 1)
t1 = data.frame(1:length(yanData$sample.group), cl$cluste)
t2 = data.frame(1:length(yanData$sample.group), yanData$sample.group)
res[i,1] = NMI(t1,t2)$value
}
return(list(avg.NMI = mean(res), NMIs = res))
}
getNMI.avg2 = function(out,yanData){
U1 = out$U
print(dim(U1))
res = matrix(rep(0,50),ncol=1)
for(i in 1:50){
set.seed(i)
cl <- kmeans(U1, length(unique(yanData$sample.group)), nstart = 1)
t1 = data.frame(1:length(yanData$sample.group), cl$cluste)
t2 = data.frame(1:length(yanData$sample.group), yanData$sample.group)
res[i,1] = NMI(t1,t2)$value
}
return(list(avg.NMI = mean(res), NMIs = res))
}
##############################################################################
##############################################################################
getFig = function(out, DataName, fileName){
# DataName = "pollen Dataset"
Data = data.frame(out$U[,c(1,2)]);
fig <- ggplot(Data, aes(X1, X2, colour = factor(yanData$sample.group))) +
geom_point(size=I(3)) + ggtitle(DataName) + xlab("PC1")+ylab("PC2") + theme(legend.title=element_blank())
fig = fig +theme(legend.text = element_text(colour = "black", angle = 0,size=12),
axis.title = element_text(colour="black", size=16),
axis.text = element_text(colour = "black",size=16))
ggsave(fig, file=fileName, width=7, height=7)
}
##############################################################################
##############################################################################