-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathshaders.wgsl
282 lines (217 loc) · 7.47 KB
/
shaders.wgsl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
struct OutputStruct{
@builtin(position) pos: vec4f,
@location(0) basePos: vec2f
}
@vertex
fn vertexShader(@location(0) pos: vec2f) -> OutputStruct {
var output: OutputStruct;
output.pos = vec4f(pos, 0.0, 1.0);
output.basePos = pos;
return output;
}
struct TimeBuffer {
time : f32
};
struct RotationBuffer {
x : f32,
y : f32,
};
@binding(0) @group(0)var<uniform> timeBuffer : TimeBuffer;
@binding(1) @group(0)var<uniform> rotationBuffer : RotationBuffer;
fn getNormal(pos: vec3f) -> vec3f {
let h = 0.0000001;
let k = vec2f(1.0, -1.0);
let zero = vec3f(0.0, 0.0, 0.0);
return normalize(
k.xyy * map(pos + k.xyy * h, zero)[3] +
k.yyx * map(pos + k.yyx * h, zero)[3] +
k.yxy * map(pos + k.yxy * h, zero)[3] +
k.xxx * map(pos + k.xxx * h, zero)[3]
);
}
/// Generates random numbers
fn hash(p: f32) -> f32 {
return fract(sin(dot(vec2f(p), vec2f(12.9898, 78.233))) * 43758.5453);
}
fn rotateX(vec: vec3<f32>, angle: f32) -> vec3<f32> {
let cosAngle = cos(angle);
let sinAngle = sin(angle);
let rotMatrix = mat3x3<f32>(
vec3<f32>(1.0, 0.0, 0.0),
vec3<f32>(0.0, cosAngle, -sinAngle),
vec3<f32>(0.0, sinAngle, cosAngle)
);
return rotMatrix * vec;
}
// Function to rotate a 3D vector around the y-axis
fn rotateY(vec: vec3<f32>, angle: f32) -> vec3<f32> {
let cosAngle = cos(angle);
let sinAngle = sin(angle);
let rotMatrix = mat3x3<f32>(
vec3<f32>(cosAngle, 0.0, sinAngle),
vec3<f32>(0.0, 1.0, 0.0),
vec3<f32>(-sinAngle, 0.0, cosAngle)
);
return rotMatrix * vec;
}
fn rotate_point(point: vec3f, angle: RotationBuffer) -> vec3f {
return rotateX(rotateY(point, angle.y), angle.x);
}
fn map(pos: vec3f, in_out: vec3f) -> vec4f {
let rotatedPos = rotate_point(pos, rotationBuffer);
let thresh = length(pos) - 1.2;
if(thresh > 0.2) {
return vec4f(in_out, thresh);
}
let power = 8.0 + 2.0 * sin(0.25 * timeBuffer.time);
var z = rotatedPos;
var c = rotatedPos;
var trap = vec3f(1e20);
var dr : f32 = 1.0;
var r = length(z);
var numIter = 0;
for(var i = 0; i < 80; i++){
r = length(z); // length of pos is close to zero
if(r > 2.0) { break; } // this would get triggered instantly
var theta: f32 = acos(z.z / r);
var phi: f32 = atan2(z.y, z.x);
dr = pow(r, power - 1.0) * power * dr + 1.0;
var zr = pow(r, power);
theta *= power;
phi *= power;
z = vec3f(
zr * sin(theta) * sin(phi),
zr * sin(theta) * cos(phi),
zr * cos(theta)
);
z += c;
//trap.x = min(abs(z.z), trap.x);
//trap.y = min(abs(z.y), trap.y);
//trap.z = min(abs(z.z), trap.z);
trap.x = min(pow(abs(z.z), 0.1), trap.x);
trap.y = min(abs(z.x) - 0.15, trap.y);
trap.z = min(length(z), trap.z);
}
let distance = 0.5 * log(r) * r / dr; // 0.5 * log ( z ) // not used at all -> does not matter
return vec4f(trap, distance);
/*
let thres = length(pos);
if( thres > 1.41 ) {
return 4(in_out, thres - 1.2);
}
var z = pos;
var c = pos;
let power = 12.0;
var dr = 1.0;
var r = 0.0;
var newOutput = vec3f(1e20);
for(var i = 0; i < 100; i++) {
r = length(z);
if(r > 2.0) { break; }
dr = pow(r, power - 1.0 ) * power * dr + 1.0;
// scale and rotate
let zr = pow(r, power);
let theta = acos(z.y / r) * power;
let phi = atan2(z.x, z.z) * power; // gonna get mad at the div by zero
// convert to cartesian
let z = zr * vec3f(
sin(theta) * sin(phi),
cos(theta),
sin(theta) * cos(phi)
);
// updating the "trap"
newOutput.x = min(pow(abs(z.y), 0.1), newOutput.x);
newOutput.y = min(abs(z.z) - 0.15, newOutput.y);
newOutput.z = min(length(z), newOutput.z);
}
let float_return = 0.5 * log(r) * r / dr;
return vec4f(newOutput, float_return);
*/
}
fn ambientOcclusion(pos: vec3f, normal: vec3f) -> f32 {
let FALLOFF = 0.46;
let N_SAMPLES = 4;
let MAX_DIST = 0.07;
var diff = 0.0;
for (var i = 0; i < N_SAMPLES; i++){
let dist = MAX_DIST * hash(f32(i));
let sample_distance = max(0.0, map(pos + dist * normal, vec3f(0.0))[3]);
diff += (dist - sample_distance) / MAX_DIST;
}
let diff_norm = diff / f32(N_SAMPLES);
let ao = 1.0 - diff_norm / FALLOFF;
return clamp(0.0, 1.0, ao);
}
// TODO: IMPL of a "trap" which goes in and out needs to be done with structs (or maybe packing), regardless that will be a pain -> less of a pain because just a float and a vector -> just use a vec4f and then "unpack" it into a vec3f and a f32, no different than having an amplitude
fn castRay(rayOrigin: vec3f, rayDirection: vec3f) -> vec4f {
let tmax = 200.0;
var t = 0.0;
var trap = vec3f(0.5);
for(var i = 0; i < 50; i++){
let pos = rayOrigin + t * rayDirection; // for some reason, rayDirection is acting like it does not exist
let mapResult = map(pos, trap);
trap = mapResult.xyz;
var h: f32 = mapResult[3];
if ( h < 0.0004 ) { break; }
t += h;
if ( t > tmax ) {
return vec4f(trap, -1.0); // negatives just serve as an if flag
}
}
return vec4f(trap, t);
}
// setup a time bind
@fragment
fn fragmentShader(@location(0) basePos: vec2f) -> @location(0) vec4f {
let freq = 50.0 + timeBuffer.time;
var cam_pos = vec3f(
3.0 * cos(0.1 * 0.125 * freq) * sin(0.1 * 0.5 * freq),
sin(0.1 * freq),
2.0 * cos(0.1 * 0.5 * freq)
);
cam_pos *= 3;
let cam_target = vec3f(0.0);
let fov = 90.0 * 3.141592 / 180.0;
let h = 1.0 * fov;
let cam_ww = normalize(cam_target - cam_pos);
let cam_uu = normalize(cross(vec3f(0.0, 1.0, 0.0), cam_ww));
let cam_vv = normalize(cross(cam_ww, cam_uu));
// the code already gives you acces to the basePos: vec2f so there is no need to use it as x
let ro = cam_pos;
var t = 0.0;
var finalRayPos = vec3f(0.0);
// for( var i = 0.0; i < 4; i += 1.01){
// // let width_modifier : f32 = (i % 2) * 2.0 - 1.0;
// // let height_modifier : f32 = (i / 2) * 2.0 - 1.0;
// let newX = basePos.x + ((i % 2) * 2.0 - 1.0) / (1024.0 * 3);
// let newY = basePos.y + ((i / 2) * 2.0 - 1.0) / (1024.0 * 3);
// // let pos = vec2f(basePos.x + width_modifier, basePos.y + height_modifier);
// let rd = normalize(newX * h * cam_uu + newY* h * cam_vv + cam_ww - ro); // no idea
// let rayCastResult = castRay(cam_pos, rd);
// finalRayPos += rayCastResult.xyz;
// t += rayCastResult[3]; // returning a uniform value
// }
let rd = normalize(basePos.x * h * cam_uu + basePos.y * h * cam_vv + cam_ww - ro); // no idea
let rayCastResult = castRay(cam_pos, rd);
finalRayPos += rayCastResult.xyz;
t += rayCastResult[3];
// t /= 4.0;
// finalRayPos /= 4.0;
if ( t > 0.0 ) {
// coloring the ray
let first_palette = vec3f(0.373, 0.18, 0.18);
let second_palette = vec3f(0.165, 0.125, 0.165);
let third_palette = vec3f(0.545, 0.255, 0.212);
let rayMult = clamp(pow(finalRayPos, vec3f(20.0)), vec3f(0.0), vec3f(1.0));
// let finalColor = first_palette * rayMult.x + second_palette * rayMult.y + third_palette * rayMult.z;
let finalColor = rayMult;
// let normal = getNormal(ro + t * rd);
//let ao = ambientOcclusion(ro + t * rd, normal);
return vec4f(pow(finalColor, vec3f(0.4545)), 1.0);
// return vec4f((normal + 1) / 2, 1);
// return vec4f(normal * finalColor, 1);
// return vec4f(normal, 1); // normals look weird because they are not being taken from a point on the surface, the sides are only shown
} else {
return vec4f(0.0, 0.0, 0.0, 0.0);
}
}