-
Notifications
You must be signed in to change notification settings - Fork 103
/
Copy pathsquash.py
251 lines (216 loc) · 10.2 KB
/
squash.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
import sys
from pathlib import Path
FILE = Path(__file__).absolute()
sys.path.append(FILE.parents[1].as_posix()) # add kapao/ to path
import argparse
from pytube import YouTube
import os.path as osp
from utils.torch_utils import select_device, time_sync
from utils.general import check_img_size
from utils.datasets import LoadImages
from models.experimental import attempt_load
import torch
import cv2
import numpy as np
import yaml
from tqdm import tqdm
import imageio
from val import run_nms, post_process_batch
import gdown
VIDEO_NAME = 'Squash MegaRally 176 ReDux - Slow Mo Edition.mp4'
URL = 'https://www.youtube.com/watch?v=Dy62-eTNvY4&ab_channel=PSASQUASHTV'
GRAY = (200, 200, 200)
CROWD_THRES = 450 # max bbox size for crowd classification
CROWD_ALPHA = 0.5
CROWD_KP_SIZE = 2
CROWD_KP_THICK = 2
CROWD_SEG_THICK = 2
BLUE = (245, 140, 66)
ORANGE = (66, 140, 245)
PLAYER_ALPHA_BOX = 0.85
PLAYER_ALPHA_POSE = 0.3
PLAYER_KP_SIZE = 4
PLAYER_KP_THICK = 4
PLAYER_SEG_THICK = 4
FPS_TEXT_SIZE = 3
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--data', type=str, default='data/coco-kp.yaml')
parser.add_argument('--imgsz', type=int, default=1280)
parser.add_argument('--weights', default='kapao_s_coco.pt')
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or cpu')
parser.add_argument('--half', action='store_true')
parser.add_argument('--conf-thres', type=float, default=0.5, help='confidence threshold')
parser.add_argument('--iou-thres', type=float, default=0.45, help='NMS IoU threshold')
parser.add_argument('--no-kp-dets', action='store_true', help='do not use keypoint objects')
parser.add_argument('--conf-thres-kp', type=float, default=0.5)
parser.add_argument('--conf-thres-kp-person', type=float, default=0.2)
parser.add_argument('--iou-thres-kp', type=float, default=0.45)
parser.add_argument('--overwrite-tol', type=int, default=50)
parser.add_argument('--scales', type=float, nargs='+', default=[1])
parser.add_argument('--flips', type=int, nargs='+', default=[-1])
parser.add_argument('--display', action='store_true', help='display inference results')
parser.add_argument('--fps', action='store_true', help='display fps')
parser.add_argument('--gif', action='store_true', help='create fig')
parser.add_argument('--start', type=int, default=20, help='start time (s)')
parser.add_argument('--end', type=int, default=80, help='end time (s)')
args = parser.parse_args()
with open(args.data) as f:
data = yaml.safe_load(f) # load data dict
# add inference settings to data dict
data['imgsz'] = args.imgsz
data['conf_thres'] = args.conf_thres
data['iou_thres'] = args.iou_thres
data['use_kp_dets'] = not args.no_kp_dets
data['conf_thres_kp'] = args.conf_thres_kp
data['iou_thres_kp'] = args.iou_thres_kp
data['conf_thres_kp_person'] = args.conf_thres_kp_person
data['overwrite_tol'] = args.overwrite_tol
data['scales'] = args.scales
data['flips'] = [None if f == -1 else f for f in args.flips]
data['count_fused'] = False
if not osp.isfile(VIDEO_NAME):
try:
yt = YouTube(URL)
# [print(s) for s in yt.streams]
stream = [s for s in yt.streams if s.itag == 137][0] # 1080p, 25 fps
print('Downloading squash demo video...')
stream.download()
print('Done.')
except Exception as e:
print('Pytube error: {}'.format(e))
print('We are working on a patch for pytube...')
print('Fetching backup demo video from google drive')
gdown.download("https://drive.google.com/uc?id=1S46QDdv0pnU98mNXxechvIVK8qOBFlkl")
device = select_device(args.device, batch_size=1)
print('Using device: {}'.format(device))
model = attempt_load(args.weights, map_location=device) # load FP32 model
half = args.half & (device.type != 'cpu')
if half: # half precision only supported on CUDA
model.half()
stride = int(model.stride.max()) # model stride
imgsz = check_img_size(args.imgsz, s=stride) # check image size
dataset = LoadImages('./{}'.format(VIDEO_NAME), img_size=imgsz, stride=stride, auto=True)
if device.type != 'cpu':
model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters()))) # run once
cap = dataset.cap
cap.set(cv2.CAP_PROP_POS_MSEC, args.start * 1000)
fps = cap.get(cv2.CAP_PROP_FPS)
n = int(fps * (args.end - args.start))
h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
gif_frames = []
video_name = 'squash_inference_{}'.format(osp.splitext(args.weights)[0])
if not args.display:
writer = cv2.VideoWriter(video_name + '.mp4',
cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
if not args.fps: # tqdm might slows down inference
dataset = tqdm(dataset, desc='Writing inference video', total=n)
t0 = time_sync()
for i, (path, img, im0, _) in enumerate(dataset):
img = torch.from_numpy(img).to(device)
img = img.half() if half else img.float() # uint8 to fp16/32
img = img / 255.0 # 0 - 255 to 0.0 - 1.0
if len(img.shape) == 3:
img = img[None] # expand for batch dim
out = model(img, augment=True, kp_flip=data['kp_flip'], scales=data['scales'], flips=data['flips'])[0]
person_dets, kp_dets = run_nms(data, out)
bboxes, poses, _, _, _ = post_process_batch(data, img, [], [[im0.shape[:2]]], person_dets, kp_dets)
bboxes = np.array(bboxes)
poses = np.array(poses)
im0_copy = im0.copy()
player_idx = []
# DRAW CROWD POSES
for j, (bbox, pose) in enumerate(zip(bboxes, poses)):
x1, y1, x2, y2 = bbox
size = ((x2 - x1) ** 2 + (y2 - y1) ** 2) ** 0.5
if size < CROWD_THRES:
cv2.rectangle(im0_copy, (int(x1), int(y1)), (int(x2), int(y2)), GRAY, thickness=2)
for x, y, _ in pose[:5]:
cv2.circle(im0_copy, (int(x), int(y)), CROWD_KP_SIZE, GRAY, CROWD_KP_THICK)
for seg in data['segments'].values():
pt1 = (int(pose[seg[0], 0]), int(pose[seg[0], 1]))
pt2 = (int(pose[seg[1], 0]), int(pose[seg[1], 1]))
cv2.line(im0_copy, pt1, pt2, GRAY, CROWD_SEG_THICK)
else:
player_idx.append(j)
im0 = cv2.addWeighted(im0, CROWD_ALPHA, im0_copy, 1 - CROWD_ALPHA, gamma=0)
# DRAW PLAYER POSES
player_bboxes = bboxes[player_idx][:2]
player_poses = poses[player_idx][:2]
def draw_player_poses(im0, missing=-1):
for j, (bbox, pose, color) in enumerate(zip(
player_bboxes[[orange_player, blue_player]],
player_poses[[orange_player, blue_player]],
[ORANGE, BLUE])):
if j == missing:
continue
im0_copy = im0.copy()
x1, y1, x2, y2 = bbox
cv2.rectangle(im0_copy, (int(x1), int(y1)), (int(x2), int(y2)), color, thickness=-1)
im0 = cv2.addWeighted(im0, PLAYER_ALPHA_BOX, im0_copy, 1 - PLAYER_ALPHA_BOX, gamma=0)
im0_copy = im0.copy()
for x, y, _ in pose:
cv2.circle(im0_copy, (int(x), int(y)), PLAYER_KP_SIZE, color, PLAYER_KP_THICK)
for seg in data['segments'].values():
pt1 = (int(pose[seg[0], 0]), int(pose[seg[0], 1]))
pt2 = (int(pose[seg[1], 0]), int(pose[seg[1], 1]))
cv2.line(im0_copy, pt1, pt2, color, PLAYER_SEG_THICK)
im0 = cv2.addWeighted(im0, PLAYER_ALPHA_POSE, im0_copy, 1 - PLAYER_ALPHA_POSE, gamma=0)
return im0
if i == 0:
# orange player on left at start
orange_player = np.argmin(player_bboxes[:, 0])
blue_player = int(not orange_player)
im0 = draw_player_poses(im0)
else:
# simple player tracking based on frame-to-frame pose difference
dist = []
for pose in poses_last:
dist.append(np.mean(np.linalg.norm(player_poses[0, :, :2] - pose[:, :2], axis=-1)))
if np.argmin(dist) == 0:
orange_player = 0
else:
orange_player = 1
blue_player = int(not orange_player)
# if only one player detected, find which player is missing
missing = -1
if len(player_poses) == 1:
if orange_player == 0: # missing blue player
player_poses = np.concatenate((player_poses, poses_last[1:]), axis=0)
player_bboxes = np.concatenate((player_bboxes, bboxes_last[1:]), axis=0)
missing = 1
else: # missing orange player
player_poses = np.concatenate((player_poses, poses_last[:1]), axis=0)
player_bboxes = np.concatenate((player_bboxes, bboxes_last[:1]), axis=0)
missing = 0
im0 = draw_player_poses(im0, missing)
bboxes_last = player_bboxes[[orange_player, blue_player]]
poses_last = player_poses[[orange_player, blue_player]]
if i == 0:
t = time_sync() - t0
else:
t = time_sync() - t1
if args.fps:
s = FPS_TEXT_SIZE
cv2.putText(im0, '{:.1f} FPS'.format(1 / t), (5*s, 25*s),
cv2.FONT_HERSHEY_SIMPLEX, s, (255, 255, 255), thickness=2*s)
if args.gif:
gif_frames.append(cv2.resize(im0, dsize=None, fx=0.25, fy=0.25)[:, :, [2, 1, 0]])
elif not args.display:
writer.write(im0)
else:
cv2.imshow('', cv2.resize(im0, dsize=None, fx=0.5, fy=0.5))
cv2.waitKey(1)
t1 = time_sync()
if i == n - 1:
break
cv2.destroyAllWindows()
cap.release()
if not args.display:
writer.release()
if args.gif:
print('Saving GIF...')
with imageio.get_writer(video_name + '.gif', mode="I", fps=fps) as writer:
for idx, frame in tqdm(enumerate(gif_frames)):
writer.append_data(frame)