-
Notifications
You must be signed in to change notification settings - Fork 103
/
Copy pathvideo.py
226 lines (195 loc) · 9.7 KB
/
video.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
import sys
from pathlib import Path
FILE = Path(__file__).absolute()
sys.path.append(FILE.parents[1].as_posix()) # add kapao/ to path
import argparse
from pytube import YouTube
import os.path as osp
from utils.torch_utils import select_device, time_sync
from utils.general import check_img_size
from utils.datasets import LoadImages
from models.experimental import attempt_load
import torch
import cv2
import yaml
from tqdm import tqdm
import imageio
from val import run_nms, post_process_batch
import numpy as np
import gdown
import csv
# youtube id, stream tag, start time, end time
# shuffle: yBZ0Y2t0ceo, 135, 34, 42
# flash mob: 2DiQUX11YaY, 136, 188, 196
# red light green light: nrchfeybHmw, 135, 56, 72
TAG_RES = {135: '480p', 136: '720p', 137: '1080p'}
DEMO_BACKUP = {
'yBZ0Y2t0ceo': ['1XqaKI8-hjmbz97UX9bI6lKxTYj73ztmf', 'yBZ0Y2t0ceo_480p.mp4'],
'2DiQUX11YaY': ['1E1azSUE5KXHvCCuFvvM6yUjQDmP3EuSx', '2DiQUX11YaY_720p.mp4'],
'nrchfeybHmw': ['1Q8awNjA6W4gePbWE5cSAu83CwjiwD0_w', 'nrchfeybHmw_480p.mp4']
}
if __name__ == '__main__':
parser = argparse.ArgumentParser()
# video options
parser.add_argument('-p', '--video-path', default='', help='path to video file')
parser.add_argument('--yt-id', default='yBZ0Y2t0ceo', help='youtube url id')
parser.add_argument('--tag', type=int, default=135, help='stream tag, 137=1080p, 136=720p, 135=480p')
parser.add_argument('--color', type=int, nargs='+', default=[255, 255, 255], help='pose color')
parser.add_argument('--face', action='store_true', help='plot face keypoints')
parser.add_argument('--display', action='store_true', help='display inference results')
parser.add_argument('--fps-size', type=int, default=1)
parser.add_argument('--gif', action='store_true', help='create gif')
parser.add_argument('--gif-size', type=int, nargs='+', default=[480, 270])
parser.add_argument('--start', type=int, default=34, help='start time (s)')
parser.add_argument('--end', type=int, default=42, help='end time (s), -1 for remainder of video')
parser.add_argument('--kp-size', type=int, default=2, help='keypoint circle size')
parser.add_argument('--kp-thick', type=int, default=2, help='keypoint circle thickness')
parser.add_argument('--line-thick', type=int, default=3, help='line thickness')
parser.add_argument('--alpha', type=float, default=0.4, help='pose alpha')
parser.add_argument('--kp-obj', action='store_true', help='plot keypoint objects only')
parser.add_argument('--csv', action='store_true', help='write results so csv file')
# model options
parser.add_argument('--data', type=str, default='data/coco-kp.yaml')
parser.add_argument('--imgsz', type=int, default=1024)
parser.add_argument('--weights', default='kapao_s_coco.pt')
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or cpu')
parser.add_argument('--half', action='store_true')
parser.add_argument('--conf-thres', type=float, default=0.5, help='confidence threshold')
parser.add_argument('--iou-thres', type=float, default=0.45, help='NMS IoU threshold')
parser.add_argument('--no-kp-dets', action='store_true', help='do not use keypoint objects')
parser.add_argument('--conf-thres-kp', type=float, default=0.5)
parser.add_argument('--conf-thres-kp-person', type=float, default=0.2)
parser.add_argument('--iou-thres-kp', type=float, default=0.45)
parser.add_argument('--overwrite-tol', type=int, default=50)
parser.add_argument('--scales', type=float, nargs='+', default=[1])
parser.add_argument('--flips', type=int, nargs='+', default=[-1])
args = parser.parse_args()
with open(args.data) as f:
data = yaml.safe_load(f) # load data dict
# add inference settings to data dict
data['imgsz'] = args.imgsz
data['conf_thres'] = args.conf_thres
data['iou_thres'] = args.iou_thres
data['use_kp_dets'] = not args.no_kp_dets
data['conf_thres_kp'] = args.conf_thres_kp
data['iou_thres_kp'] = args.iou_thres_kp
data['conf_thres_kp_person'] = args.conf_thres_kp_person
data['overwrite_tol'] = args.overwrite_tol
data['scales'] = args.scales
data['flips'] = [None if f == -1 else f for f in args.flips]
data['count_fused'] = False
video_path = args.video_path
if not video_path:
video_path = args.yt_id + '_' + TAG_RES[args.tag] + '.mp4'
url = 'https://www.youtube.com/watch?v={}'.format(args.yt_id)
if not osp.isfile(video_path):
try:
yt = YouTube(url)
# [print(s) for s in yt.streams]
stream = [s for s in yt.streams if s.itag == args.tag][0]
print('Downloading demo video...')
stream.download(filename=video_path)
print('Done.')
except Exception as e:
print('Pytube error: {}'.format(e))
print('We are working on a patch for pytube...')
if video_path == DEMO_BACKUP[args.yt_id][1]:
print('Fetching backup demo video from google drive')
gdown.download("https://drive.google.com/uc?id={}".format(DEMO_BACKUP[args.yt_id][0]))
else:
sys.exit()
device = select_device(args.device, batch_size=1)
print('Using device: {}'.format(device))
model = attempt_load(args.weights, map_location=device) # load FP32 model
half = args.half & (device.type != 'cpu')
if half: # half precision only supported on CUDA
model.half()
stride = int(model.stride.max()) # model stride
imgsz = check_img_size(args.imgsz, s=stride) # check image size
dataset = LoadImages(video_path, img_size=imgsz, stride=stride, auto=True)
if device.type != 'cpu':
model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters()))) # run once
cap = dataset.cap
cap.set(cv2.CAP_PROP_POS_MSEC, args.start * 1000)
fps = cap.get(cv2.CAP_PROP_FPS)
if args.end == -1:
n = int(cap.get(cv2.CAP_PROP_FRAME_COUNT) - fps * args.start)
else:
n = int(fps * (args.end - args.start))
h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
gif_frames = []
out_path = '{}_{}_{}'.format(osp.splitext(video_path)[0], osp.splitext(args.weights)[0],
args.device if args.device == 'cpu' else 'gpu')
if args.csv:
f = open(out_path + '.csv', 'w')
csv_writer = csv.writer(f)
write_video = not args.display and not args.gif
if write_video:
writer = cv2.VideoWriter(out_path + '.mp4',
cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
dataset = tqdm(dataset, desc='Running inference', total=n)
t0 = time_sync()
for i, (path, img, im0, _) in enumerate(dataset):
img = torch.from_numpy(img).to(device)
img = img.half() if half else img.float() # uint8 to fp16/32
img = img / 255.0 # 0 - 255 to 0.0 - 1.0
if len(img.shape) == 3:
img = img[None] # expand for batch dim
out = model(img, augment=True, kp_flip=data['kp_flip'], scales=data['scales'], flips=data['flips'])[0]
person_dets, kp_dets = run_nms(data, out)
bboxes, poses, _, _, _ = post_process_batch(data, img, [], [[im0.shape[:2]]], person_dets, kp_dets)
# im0[433:455, 626:816] = np.mean(im0[434:454, 626:816], axis=(0, 1)) # remove patch
im0_copy = im0.copy()
# DRAW POSES
csv_row = []
for j, (bbox, pose) in enumerate(zip(bboxes, poses)):
x1, y1, x2, y2 = bbox
cv2.rectangle(im0_copy, (int(x1), int(y1)), (int(x2), int(y2)), args.color, thickness=1)
if args.csv:
for x, y, c in pose:
csv_row.extend([x, y, c])
if args.face:
for x, y, c in pose[data['kp_face']]:
if not args.kp_obj or c:
cv2.circle(im0_copy, (int(x), int(y)), args.kp_size, args.color, args.kp_thick)
for seg in data['segments'].values():
if not args.kp_obj or (pose[seg[0], -1] and pose[seg[1], -1]):
pt1 = (int(pose[seg[0], 0]), int(pose[seg[0], 1]))
pt2 = (int(pose[seg[1], 0]), int(pose[seg[1], 1]))
cv2.line(im0_copy, pt1, pt2, args.color, args.line_thick)
im0 = cv2.addWeighted(im0, args.alpha, im0_copy, 1 - args.alpha, gamma=0)
if i == 0:
t = time_sync() - t0
else:
t = time_sync() - t1
if not args.gif and args.fps_size:
cv2.putText(im0, '{:.1f} FPS'.format(1 / t), (5 * args.fps_size, 25 * args.fps_size),
cv2.FONT_HERSHEY_SIMPLEX, args.fps_size, (255, 255, 255), thickness=2 * args.fps_size)
if args.gif:
gif_img = cv2.cvtColor(cv2.resize(im0, dsize=tuple(args.gif_size)), cv2.COLOR_RGB2BGR)
if args.fps_size:
cv2.putText(gif_img, '{:.1f} FPS'.format(1 / t), (5 * args.fps_size, 25 * args.fps_size),
cv2.FONT_HERSHEY_SIMPLEX, args.fps_size, (255, 255, 255), thickness=2 * args.fps_size)
gif_frames.append(gif_img)
elif write_video:
writer.write(im0)
else:
cv2.imshow('', im0)
cv2.waitKey(1)
if args.csv:
csv_writer.writerow(csv_row)
t1 = time_sync()
if i == n - 1:
break
cv2.destroyAllWindows()
cap.release()
if write_video:
writer.release()
if args.gif:
print('Saving GIF...')
with imageio.get_writer(out_path + '.gif', mode="I", fps=fps) as writer:
for idx, frame in tqdm(enumerate(gif_frames)):
writer.append_data(frame)
if args.csv:
f.close()