-
Notifications
You must be signed in to change notification settings - Fork 2
/
cap_pricing.py
101 lines (63 loc) · 2.25 KB
/
cap_pricing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
"""
Cap Pricing
Source Code
Author : William Carpenter
Date : April 2024
Objective: Use a binomial tree rate model to price caps.
"""
import sys
import os
import math
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
# Custom module
import model_ho_lee as model
#%%
zero_coupons = pd.read_csv('https://raw.githubusercontent.com/wrcarpenter/Interest-Rate-Models/main/Data/zcbs.csv')
zcbs = zero_coupons.loc[zero_coupons['Date']=='3/8/2024']
zcbs = zcbs.drop("Date", axis=1)
# small example for calibration
notion = 1000000
sigma = 0.009
strike = 5.50
delta = 1/12
cpn = 0
prob = 1/2
zeros = np.array(zcbs.iloc[:,0:60])
x = model.build(zeros, sigma, delta)
tree = model.rateTree(x[0], x[2], sigma, delta)
cap = model.cf_cap(tree, strike, delta, notion, cpn)
p = model.priceTree(tree, prob, cap, delta, "cap", notion)
px = p[0]
ptree = p[1]
#%%
# Varying rate strike for cap pricing
# Create cap pricing array
pricing = np.zeros([20,5])
strike = 1.00
for row in range(0, pricing.shape[0]):
pricing[row, 0] = notion
pricing[row, 1] = strike
pricing[row, 2] = zeros.shape[1] # periods
pricing[row, 3] = sigma
cashflow = model.cf_cap(tree, strike, delta, notion, cpn)
output = model.priceTree(tree, prob, cashflow, delta, "cap", notion)
px = output[0]
pricing[row, 4] = px
strike = strike + 0.50
pricing = pd.DataFrame(pricing, columns=["Notional", "Strike", "Periods", "Volatility", "Price"])
#%%
# Chart the given array
def chart_cap_pricing(arr, w, l, title):
x1 = np.array(arr['Strike'])
y1 = np.array(arr['Price'])
fig,ax = plt.subplots(figsize=(w,l))
ax.set_xticks(np.arange(0, len(arr)+1, 0.5))
ax.set_yticks(np.arange(0,300000,50000))
ax.set_title(title, fontsize="large")
ax.set_ylabel('Price', fontsize="large")
ax.set_xlabel('Strike', fontsize="large")
plt.plot(x1, y1, color='blue', label="Cap Price")
plt.legend(loc='upper right', fontsize='large')
chart_cap_pricing(pricing, 10, 5, "Cap Prices with Ho-Lee Model: Vary by Strike Rate (%)")