-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbaseline.py
160 lines (117 loc) · 4.88 KB
/
baseline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import time
from numpy.core.shape_base import block
import torch
from torch.utils.data import DataLoader
from torch import nn
import torch.nn.functional as F
from torch.optim.lr_scheduler import MultiStepLR
import logging
from tqdm import tqdm
from datasets import MiniImageNet, SupportingSetSampler, prepare_nshot_task
from models import Conv4Classifier
from utils import get_splits, evaluation
def train():
logging.basicConfig(filename='./logs/baseline.log', filemode='w', format='%(asctime)s - %(message)s', level=logging.INFO)
device = torch.device('cuda')
torch.backends.cudnn.benchmark = True
n = 1 # number of samples per supporting class
k = 5 # number of classes
q = 15 # query image per class
learning_rate = 0.1
####################
# Prepare Data Set #
####################
print('preparing dataset')
base_cls, val_cls, support_cls = get_splits()
base = MiniImageNet('base', base_cls, val_cls, support_cls)
base_loader = DataLoader(base, batch_size=256, shuffle=True, num_workers=4)
# val = MiniImageNet('val', base_cls, val_cls, support_cls)
# val_loader = DataLoader(val, batch_size=256, shuffle=True, num_workers=4)
# support = MiniImageNet('support', base_cls, val_cls, support_cls)
# support_loader = DataLoader(support,
# batch_sampler=SupportingSetSampler(support, n, k, q),
# num_workers=4)
#########
# Model #
#########
model = Conv4Classifier(len(base_cls))
model.to(device)
criterion = torch.nn.CrossEntropyLoss().cuda()
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate, momentum=0.9, weight_decay=1e-4, nesterov=True)
scheduler = MultiStepLR(optimizer, milestones=[int(.5*90),int(.75*90)], gamma=0.1)
print('start to train')
for epoch in range(90):
running_loss = 0.0
data_load_time = 0
gpu_time = 0
epoch_time = 0
for i, data in enumerate(base_loader):
time1 = time.time()
inputs, labels = data[0].to(device), data[1].to(device)
time2 = time.time()
outputs = model(inputs)
loss = criterion(outputs, labels)
optimizer.zero_grad()
loss.backward()
optimizer.step()
time3=time.time()
# print statistics
running_loss += loss.item()
data_load_time += time2-time1
gpu_time += time3-time2
epoch_time += time3-time1
if i % 30 == 29: # print every 2000 mini-batches
logging.info('[%d, %3d] loss: %.3f ' %
(epoch + 1, i + 1, running_loss / 30))
print('[%d, %5d] load_data:%2f gpu_time:%2f epoch_time:%.2f loss: %.3f ' %
(epoch + 1, i + 1, data_load_time, gpu_time, epoch_time, running_loss / 30))
running_loss = 0.0
data_load_time = 0
gpu_time = 0
epoch_time = 0
scheduler.step()
PATH = f'./baseline_{epoch}.pth'
torch.save(model.state_dict(), PATH)
def evaluate():
device = torch.device('cuda')
torch.backends.cudnn.benchmark = True
# ------------------------------- #
# Load Model
# ------------------------------- #
PATH = './baseline_89.pth'
model = Conv4Classifier(64)
model.load_state_dict(torch.load(PATH))
# model = Conv4Classifier(64)
# checkpoint = torch.load('./model_best.pth.tar')
# model_dict = model.state_dict()
# params = checkpoint['state_dict']
# params = {k: v for k, v in params.items() if k in model_dict}
# model_dict.update(params)
# model.load_state_dict(model_dict)
model.to(device)
model.eval()
####################
# Prepare Data Set #
####################
print('preparing dataset')
n = 5 # number of samples per supporting class
k = 5 # number of classes
q = 15 # query image per class
episodes_per_epoch = 10000
base_cls, val_cls, support_cls = get_splits()
support = MiniImageNet('support', base_cls, val_cls, support_cls)
support_loader = DataLoader(support,
batch_sampler=SupportingSetSampler(support, n, k, q, episodes_per_epoch),
num_workers=4)
logging.basicConfig(filename=f'./logs/baseline_cosine_result_{k}-way_{n}-shot.log', filemode='w', format='%(asctime)s - %(message)s', level=logging.INFO)
print('start to evaluate')
accs = 0
for i, data in enumerate(tqdm(support_loader)):
inputs, labels = prepare_nshot_task(n, k, q, data)
embeddings = model(inputs, feature=True)
acc = evaluation(embeddings, labels, n, k, q)
logging.info(f'[{i:3d}]: {acc}%')
accs += acc
logging.info(f'Average ACC is {accs}/{len(support_loader)}={accs/len(support_loader)}')
if __name__ == '__main__':
evaluate()