-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
254 lines (200 loc) · 9.35 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
import time
from torch.utils.data import DataLoader
from tqdm import tqdm
import torch
import argparse
import torch.nn.functional as F
from torch.optim.lr_scheduler import MultiStepLR
from datetime import datetime
import os
from datasets import MiniImageNet, SupportingSetSampler, prepare_nshot_task
import models
from utils import compute_confidence_interval, get_splits, evaluation, AverageMeter, setup_logger
from graph import Graph
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--gpu', default=0, type=int)
parser.add_argument('--model_arch', default='conv4', choices=['conv4', 'resnet10', 'resnet18'], type=str)
# parser.add_argument('--attention', action='store_true')
parser.add_argument('--start_epoch', default=1, type=int)
parser.add_argument('--num_epoch', default=90, type=int)
parser.add_argument('--learning_rate', default=0.01, type=float)
parser.add_argument('--scheduler_milestones', nargs='+', type=int)
parser.add_argument('--alpha', default=0.5, type=float)
parser.add_argument('--model_saving_rate', default=30, type=int)
parser.add_argument('--train', action='store_true')
parser.add_argument('--support_groups', default=10000, type=int)
parser.add_argument('--evaluate', action='store_true')
parser.add_argument('--evaluation_rate', default=10, type=int)
parser.add_argument('--model_dir', default=None, type=str)
parser.add_argument('--checkpoint', action='store_true')
parser.add_argument('--normalize', action='store_true')
parser.add_argument('--save_settings', action='store_true')
parser.add_argument('--layer', default=4, type=int)
args = parser.parse_args()
device = torch.device(f'cuda:{args.gpu}')
model_arch = args.model_arch
# attention = args.attention
learning_rate = args.learning_rate
alpha = args.alpha
start_epoch = args.start_epoch
num_epoch = args.num_epoch
model_saving_rate = args.model_saving_rate
toTrain = args.train
toEvaluate = args.evaluate
evaluation_rate = args.evaluation_rate
checkpoint = args.checkpoint
normalize = args.normalize
scheduler_milestones = args.scheduler_milestones
save_settings = args.save_settings
support_groups = args.support_groups
# ------------------------------- #
# Generate folder
# ------------------------------- #
if checkpoint:
model_dir = f'./training_models/{args.model_dir}'
else:
model_dir = f'./training_models/{datetime.now().strftime("%Y-%m-%d_%H-%M-%S")}'
os.makedirs(model_dir)
# ------------------------------- #
# Config logger
# ------------------------------- #
train_logger = setup_logger('train_logger', f'{model_dir}/train.log')
result_logger = setup_logger('result_logger', f'{model_dir}/result.log')
# overview_logger = setup_logger('overview_logger', f'./overview_result.log')
if save_settings:
# ------------------------------- #
# Saving training parameters
# ------------------------------- #
result_logger.info(f'Model: {model_arch}')
result_logger.info(f'Layer: {args.layer}')
result_logger.info(f'Learning rate: {learning_rate}')
result_logger.info(f'alpha: {alpha}')
result_logger.info(f'Normalize feature vector: {normalize}')
# ------------------------------- #
# Load extracted knowledge graph
# ------------------------------- #
knowledge_graph = Graph()
classFile_to_superclasses, superclassID_to_wikiID =\
knowledge_graph.class_file_to_superclasses(1, [1,2])
####################
# Prepare Data Set #
####################
print('preparing dataset')
base_cls, val_cls, support_cls = get_splits()
base = MiniImageNet('base', base_cls, val_cls, support_cls, classFile_to_superclasses)
base_loader = DataLoader(base, batch_size=256, shuffle=True, num_workers=4)
support = MiniImageNet('support', base_cls, val_cls, support_cls,
classFile_to_superclasses, eval=True)
support_loader_1 = DataLoader(support,
batch_sampler=SupportingSetSampler(support, 1, 5, 15, support_groups),
num_workers=4)
support_loader_5 = DataLoader(support,
batch_sampler=SupportingSetSampler(support, 5, 5, 15, support_groups),
num_workers=4)
#########
# Model #
#########
if model_arch == 'conv4':
model = models.Conv4Attension(len(base_cls), len(superclassID_to_wikiID))
if model_arch == 'resnet10':
model = models.resnet10(len(base_cls), len(superclassID_to_wikiID))
if model_arch == 'resnet18':
model = models.resnet18(len(base_cls), len(superclassID_to_wikiID))
model.to(device)
# loss function and optimizer
criterion = loss_fn(alpha)
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate, momentum=0.9, weight_decay=1e-4, nesterov=True)
scheduler = MultiStepLR(optimizer, milestones=scheduler_milestones, gamma=0.1)
if save_settings:
result_logger.info('optimizer: torch.optim.SGD(model.parameters(), '
f'lr={learning_rate}, momentum=0.9, weight_decay=1e-4, nesterov=True)')
result_logger.info(f'scheduler: MultiStepLR(optimizer, milestones={scheduler_milestones}, gamma=0.1)\n')
# result_logger.info('='*40+'Results Below'+'='*40+'\n')
if checkpoint:
print('load model...')
model.load_state_dict(torch.load(f'{model_dir}/{start_epoch-1}.pth'))
model.to(device)
for _ in range(start_epoch - 1):
scheduler.step()
# ------------------------------- #
# Start to train
# ------------------------------- #
if toTrain:
for epoch in range(start_epoch, start_epoch+num_epoch):
model.train()
train(model, normalize, base_loader, optimizer, criterion, epoch,
start_epoch+num_epoch-1, device, train_logger)
scheduler.step()
if epoch % model_saving_rate == 0:
torch.save(model.state_dict(), f'{model_dir}/{epoch}.pth')
# ------------------------------- #
# Evaluate current model
# ------------------------------- #
if toEvaluate:
if epoch % evaluation_rate == 0:
evaluate(model, normalize, epoch, support_loader_1,
1, 5, 15, device, result_logger)
evaluate(model, normalize, epoch, support_loader_5,
5, 5, 15, device, result_logger)
else:
if toEvaluate:
evaluate(model, normalize, start_epoch-1, support_loader_1,
1, 5, 15, device, result_logger)
evaluate(model, normalize, start_epoch-1, support_loader_5,
5, 5, 15, device, result_logger)
result_logger.info('='*140)
def train(model, normalize, base_loader, optimizer, criterion, epoch,
total_epoch, device, logger):
batch_time = AverageMeter() # forward prop. + back prop. time
data_time = AverageMeter() # data loading time
losses = AverageMeter() # loss
model.train()
start = time.time()
for i, (imgs, labels, sp_labels) in enumerate(base_loader):
data_time.update(time.time() - start)
imgs = imgs.to(device)
labels = labels.to(device)
sp_labels = sp_labels.to(device)
_, class_outputs, sp_outputs = model(imgs, norm=normalize)
loss = criterion(class_outputs, sp_outputs, labels, sp_labels)
optimizer.zero_grad()
loss.backward()
optimizer.step()
losses.update(loss.item())
batch_time.update(time.time() - start)
start = time.time()
if i % 30 == 29: # print every 30 mini-batches
logger.info(f'[{epoch:3d}/{total_epoch}|{i+1:3d}, '
f'{len(base_loader)}] batch_time: {batch_time.avg:.2f} '
f'data_time: {data_time.avg:.2f} loss: {losses.avg:.3f}')
batch_time.reset()
data_time.reset()
losses.reset()
def evaluate(model, normalize, epoch, support_loader, n, k, q, device, logger):
accs_l2 = []
accs_cosine = []
model.eval()
with torch.no_grad():
for data in tqdm(support_loader):
imgs, labels = prepare_nshot_task(n, k, q, data, device)
_, outputs, _ = model(imgs, norm=normalize)
acc_l2 = evaluation(outputs, labels, n, k, q, 'l2')
acc_cosine = evaluation(outputs, labels, n, k, q, 'cosine')
accs_l2.append(acc_l2)
accs_cosine.append(acc_cosine)
m_l2, pm_l2 = compute_confidence_interval(accs_l2)
m_cosine, pm_cosine = compute_confidence_interval(accs_cosine)
# file_writer.write(f'{epoch:3d}.pth {n}-shot\tAccuracy_l2: {m_l2:.2f}+/-{pm_l2:.2f} Accuracy_cosine: {m_cosine:.2f}+/-{pm_cosine:.2f}\n')
logger.info(f'{epoch:3d}.pth: {n}-shot \t l2: {m_l2:.2f}+/-{pm_l2:.2f} \t '
f'cosine: {m_cosine:.2f}+/-{pm_cosine:.2f}')
def loss_fn(alpha):
def _loss_fn(class_outputs, sp_outputs, labels, sp_labels):
# import ipdb; ipdb.set_trace()
BCE_loss = F.binary_cross_entropy_with_logits(sp_outputs, sp_labels)
CEL_loss = F.cross_entropy(class_outputs, labels)
combo_loss = CEL_loss * alpha + BCE_loss * (1 - alpha)
return combo_loss
return _loss_fn
if __name__ == '__main__':
main()