-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_all.py
330 lines (262 loc) · 13 KB
/
train_all.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
import time
from torch.utils.data import DataLoader
from tqdm import tqdm
import torch
import argparse
import torch.nn.functional as F
from torch.optim.lr_scheduler import MultiStepLR
from datetime import datetime
import os
from sentence_transformers import SentenceTransformer
from datasets import MiniImageNet, SupportingSetSampler, prepare_nshot_task
import models
from utils import compute_confidence_interval, get_splits, AverageMeter, setup_logger, get_classFile_to_wikiID, argmax_evaluation
from graph import Graph, extract_embedding_by_labels, find_nodeIndex_by_imgLabels
os.environ["TOKENIZERS_PARALLELISM"] = "false"
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--gpu', default=0, type=int)
parser.add_argument('--model_arch', default='conv4', choices=['conv4', 'resnet10', 'resnet18'], type=str)
# parser.add_argument('--attention', action='store_true')
parser.add_argument('--start_epoch', default=1, type=int)
parser.add_argument('--num_epoch', default=90, type=int)
parser.add_argument('--learning_rate', default=0.01, type=float)
parser.add_argument('--scheduler_milestones', nargs='+', type=int)
parser.add_argument('--alpha', default=1, type=float)
parser.add_argument('--beta', default=1, type=float)
parser.add_argument('--gamma', default=0.5, type=float)
parser.add_argument('--model_saving_rate', default=30, type=int)
parser.add_argument('--train', action='store_true')
parser.add_argument('--support_groups', default=1000, type=int)
parser.add_argument('--evaluate', action='store_true')
parser.add_argument('--evaluation_rate', default=10, type=int)
parser.add_argument('--model_dir', type=str)
parser.add_argument('--checkpoint', action='store_true')
parser.add_argument('--normalize', action='store_true')
parser.add_argument('--save_settings', action='store_true')
parser.add_argument('--layer', default=4, type=int)
parser.add_argument('--fusion_method', default='sum', type=str)
parser.add_argument('--lamda', default=0, type=float)
# parser.add_argument('--gcn_path', type=str)
# parser.add_argument('--img_encoder_path', type=str)
args = parser.parse_args()
device = torch.device(f'cuda:{args.gpu}')
model_arch = args.model_arch
# attention = args.attention
learning_rate = args.learning_rate
alpha = args.alpha
beta = args.beta
gamma = args.gamma
start_epoch = args.start_epoch
num_epoch = args.num_epoch
model_saving_rate = args.model_saving_rate
toTrain = args.train
toEvaluate = args.evaluate
evaluation_rate = args.evaluation_rate
checkpoint = args.checkpoint
normalize = args.normalize
scheduler_milestones = args.scheduler_milestones
save_settings = args.save_settings
support_groups = args.support_groups
fusion_method = args.fusion_method
lamda = args.lamda
# gcn_path = args.gcn_path
# img_encoder_path = args.img_encoder_path
# ------------------------------- #
# Generate folder
# ------------------------------- #
if checkpoint:
model_dir = f'./training_models/{args.model_dir}'
else:
model_dir = f'./training_models/{datetime.now().strftime("%Y-%m-%d_%H-%M-%S")}'
os.makedirs(model_dir)
# ------------------------------- #
# Config logger
# ------------------------------- #
train_logger = setup_logger('train_logger', f'{model_dir}/train_all.log')
result_logger = setup_logger('result_logger', f'{model_dir}/result_all.log')
if save_settings:
# ------------------------------- #
# Saving training parameters
# ------------------------------- #
result_logger.info(f'Model: {model_arch}')
result_logger.info(f'Fusion Method: {fusion_method}; Lamda: {lamda}')
result_logger.info(f'Attention Layer: {args.layer}')
result_logger.info(f'Learning rate: {learning_rate}')
result_logger.info(f'Alpha: {alpha} Beta: {beta} Gamma: {gamma}')
# result_logger.info(f'alpha: {alpha}')
result_logger.info(f'Normalize feature vector: {normalize}')
# ------------------------------- #
# Load extracted knowledge graph
# ------------------------------- #
knowledge_graph = Graph()
classFile_to_superclasses, superclassID_to_wikiID =\
knowledge_graph.class_file_to_superclasses(1, [1,2])
nodes = knowledge_graph.nodes
# import ipdb; ipdb.set_trace()
layer = 2
layer_nums = [768, 2048, 1600]
edges = knowledge_graph.edges
cat_feature = 1600
final_feature = 1024
####################
# Prepare Data Set #
####################
print('preparing dataset')
base_cls, val_cls, support_cls = get_splits()
base = MiniImageNet('base', base_cls, val_cls, support_cls, classFile_to_superclasses)
base_loader = DataLoader(base, batch_size=256, shuffle=True, num_workers=4)
support = MiniImageNet('support', base_cls, val_cls, support_cls,
classFile_to_superclasses, eval=True)
support_loader_1 = DataLoader(support,
batch_sampler=SupportingSetSampler(support, 1, 5, 15, support_groups),
num_workers=4)
support_loader_5 = DataLoader(support,
batch_sampler=SupportingSetSampler(support, 5, 5, 15, support_groups),
num_workers=4)
#########
# Model #
#########
# sentence transformer
sentence_transformer = SentenceTransformer('paraphrase-distilroberta-base-v1')
# image encoder
if model_arch == 'conv4':
img_encoder = models.Conv4Attension(len(base_cls), len(superclassID_to_wikiID))
if model_arch == 'resnet10':
img_encoder = models.resnet10(len(base_cls), len(superclassID_to_wikiID))
if model_arch == 'resnet18':
img_encoder = models.resnet18(len(base_cls), len(superclassID_to_wikiID))
# img_encoder.load_state_dict(torch.load(f'{model_dir}/{img_encoder_path}'))
# img_encoder.to(device)
# img_encoder.eval()
# knowledge graph encoder
GCN = models.GCN(layer, layer_nums, edges)
# GCN.load_state_dict(torch.load(f'{model_dir}/{gcn_path}'))
# GCN.to(device)
# GCN.eval()
# total model
model = models.FSKG(cat_feature, final_feature, img_encoder, GCN, len(base_cls), lamda)
model.to(device)
# loss function and optimizer
criterion = loss_fn(alpha, beta, gamma, device)
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate, momentum=0.9, weight_decay=1e-4, nesterov=True)
scheduler = MultiStepLR(optimizer, milestones=scheduler_milestones, gamma=0.1)
if save_settings:
result_logger.info('optimizer: torch.optim.SGD(model.parameters(), '
f'lr={learning_rate}, momentum=0.9, weight_decay=1e-4, nesterov=True)')
result_logger.info(f'scheduler: MultiStepLR(optimizer, milestones={scheduler_milestones}, gamma=0.1)\n')
# result_logger.info('='*40+'Results Below'+'='*40+'\n')
if checkpoint:
print('load model...')
model.load_state_dict(torch.load(f'{model_dir}/FSKG_{start_epoch-1}.pth'))
model.to(device)
# for _ in range(start_epoch - 1):
# scheduler.step()
# ---------------------------------------- #
# Graph convolution to get kg embeddings
# ---------------------------------------- #
# encode node description
desc_embeddings = knowledge_graph.encode_desc(sentence_transformer).to(device)
# start graph convolution
# import ipdb; ipdb.set_trace()
# kg_embeddings = GCN(desc_embeddings)
# kg_embeddings = kg_embeddings.to('cpu')
classFile_to_wikiID = get_classFile_to_wikiID()
# train_class_name_to_id = base.class_name_to_id
train_id_to_class_name = base.id_to_class_name
# eval_class_name_to_id = support.class_name_to_id
eval_id_to_class_name = support.id_to_class_name
# ------------------------------- #
# Start to train
# ------------------------------- #
if toTrain:
for epoch in range(start_epoch, start_epoch+num_epoch):
model.train()
train(model, img_encoder, normalize, base_loader, optimizer, criterion, epoch,
start_epoch+num_epoch-1, device, train_logger,
nodes, desc_embeddings, train_id_to_class_name, classFile_to_wikiID)
scheduler.step()
if epoch % model_saving_rate == 0:
torch.save(model.state_dict(), f'{model_dir}/FSKG_{epoch}.pth')
# ------------------------------- #
# Evaluate current model
# ------------------------------- #
if toEvaluate:
if epoch % evaluation_rate == 0:
evaluate(model, normalize, epoch, support_loader_1,
1, 5, 15, device, result_logger, nodes, desc_embeddings, eval_id_to_class_name, classFile_to_wikiID)
evaluate(model, normalize, epoch, support_loader_5,
5, 5, 15, device, result_logger, nodes, desc_embeddings, eval_id_to_class_name, classFile_to_wikiID)
else:
# pass
if toEvaluate:
evaluate(model, normalize, 30, support_loader_1,
1, 5, 15, device, result_logger, nodes, desc_embeddings, eval_id_to_class_name, classFile_to_wikiID)
evaluate(model, normalize, 30, support_loader_5,
5, 5, 15, device, result_logger, nodes, desc_embeddings, eval_id_to_class_name, classFile_to_wikiID)
result_logger.info('='*140)
def train(model, img_encoder, normalize, base_loader, optimizer, criterion, epoch,
total_epoch, device, logger, nodes, desc_embeddings, id_to_class_name, classFile_to_wikiID):
batch_time = AverageMeter() # forward prop. + back prop. time
data_time = AverageMeter() # data loading time
losses = AverageMeter() # loss
model.train()
img_encoder.eval()
start = time.time()
for i, (imgs, labels, sp_labels) in enumerate(base_loader):
data_time.update(time.time() - start)
imgs = imgs.to(device)
labels = labels.to(device)
sp_labels = sp_labels.to(device)
corr_nodeIndexs = find_nodeIndex_by_imgLabels(nodes, labels, id_to_class_name, classFile_to_wikiID)
_, class_outputs, sp_outputs, att_features, corr_features = model(imgs, desc_embeddings, corr_nodeIndexs, norm=normalize)
loss = criterion(class_outputs, sp_outputs, labels, sp_labels, att_features, corr_features)
optimizer.zero_grad()
loss.backward()
optimizer.step()
losses.update(loss.item())
batch_time.update(time.time() - start)
start = time.time()
if i % 30 == 29: # print every 30 mini-batches
logger.info(f'[{epoch:3d}/{total_epoch}|{i+1:3d}, '
f'{len(base_loader)}] batch_time: {batch_time.avg:.2f} '
f'data_time: {data_time.avg:.2f} loss: {losses.avg:.3f}')
batch_time.reset()
data_time.reset()
losses.reset()
def evaluate(model, normalize, epoch, support_loader, n, k, q, device, logger, nodes, desc_embeddings, id_to_class_name, classFile_to_wikiID):
accs_l2 = []
accs_cosine = []
model.eval()
with torch.no_grad():
for data in tqdm(support_loader):
imgs, labels = prepare_nshot_task(n, k, q, data, device)
support_corr_nodeIndexs = find_nodeIndex_by_imgLabels(nodes, data[1][:n*k], id_to_class_name, classFile_to_wikiID)
support_imgs, _, _, _, _ = model(imgs[:n*k], desc_embeddings, support_corr_nodeIndexs, norm=normalize)
queries = []
for i in range(k):
query_corr_nodeIndexs = find_nodeIndex_by_imgLabels(nodes, (q*k)*[data[1][0+i*n]], id_to_class_name, classFile_to_wikiID)
query_imgs, _, _, _, _ = model(imgs[n*k:], desc_embeddings, query_corr_nodeIndexs, norm=normalize)
queries.append(query_imgs)
# import ipdb; ipdb.set_trace()
acc_l2 = argmax_evaluation(support_imgs, queries, labels, n, k, q, 'l2')
acc_cosine = argmax_evaluation(support_imgs, queries, labels, n, k, q, 'cosine')
accs_l2.append(acc_l2)
accs_cosine.append(acc_cosine)
m_l2, pm_l2 = compute_confidence_interval(accs_l2)
m_cosine, pm_cosine = compute_confidence_interval(accs_cosine)
logger.info(f'{epoch:3d}.pth: {n}-shot \t l2: {m_l2:.2f}+/-{pm_l2:.2f} \t '
f'cosine: {m_cosine:.2f}+/-{pm_cosine:.2f}')
def loss_fn(alpha, beta, gamma, device):
scaler = 10
def _loss_fn(class_outputs, sp_outputs, labels, sp_labels, att_features, corr_features):
# import ipdb; ipdb.set_trace()
loss_target = torch.ones(att_features.shape[0]).to(device)
BCE_loss = F.binary_cross_entropy_with_logits(sp_outputs, sp_labels)
CEL_loss = F.cross_entropy(class_outputs, labels)
Feature_loss = F.cosine_embedding_loss(att_features, corr_features, loss_target)
combo_loss = CEL_loss * alpha + BCE_loss * beta + Feature_loss * gamma * scaler
return combo_loss
return _loss_fn
if __name__ == '__main__':
main()