-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_gcn.py
239 lines (187 loc) · 8.7 KB
/
train_gcn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
import pickle
import time
from torch.utils.data import DataLoader
from tqdm import tqdm
import torch
import argparse
import torch.nn.functional as F
from torch.optim.lr_scheduler import MultiStepLR
from datetime import datetime
import os
from sentence_transformers import SentenceTransformer
from datasets import MiniImageNet
import models
from utils import get_splits, AverageMeter, setup_logger, get_classFile_to_wikiID
from graph import Graph
os.environ["TOKENIZERS_PARALLELISM"] = "false"
def get_classifier(img_encoder, img_feature_dim, num_classes, data_loader, split, normalize, model_dir, device):
img_encoder.eval()
classifiers = torch.zeros(num_classes, img_feature_dim, dtype=torch.float32)
# import ipdb; ipdb.set_trace()
# return classifiers for each class
with torch.no_grad():
for _, (imgs, labels, _) in enumerate(tqdm(data_loader)):
imgs = imgs.to(device)
img_features, _, _ = img_encoder(imgs, norm=normalize)
img_features = img_features.to('cpu')
# # del img_features
for i, label in enumerate(labels):
classifiers[label] += img_features[i]
classifiers /= 600
with open(f'{model_dir}/{split}_classifiers.pkl', 'wb') as f:
pickle.dump(classifiers, f, pickle.HIGHEST_PROTOCOL)
return classifiers
def train():
parser = argparse.ArgumentParser()
parser.add_argument('--gpu', default=0, type=int)
parser.add_argument('--model_arch', default='conv4', choices=['conv4', 'resnet10', 'resnet18'], type=str)
parser.add_argument('--start_epoch', default=1, type=int)
parser.add_argument('--num_epoch', default=90, type=int)
parser.add_argument('--learning_rate', default=0.01, type=float)
parser.add_argument('--model_saving_rate', default=30, type=int)
parser.add_argument('--train', action='store_true')
# parser.add_argument('--support_groups', default=10000, type=int)
parser.add_argument('--evaluate', action='store_true')
parser.add_argument('--evaluation_rate', default=10, type=int)
parser.add_argument('--model_dir', type=str)
parser.add_argument('--img_encoder_path', type=str)
parser.add_argument('--checkpoint', action='store_true')
parser.add_argument('--normalize', action='store_true')
parser.add_argument('--save_settings', action='store_true')
parser.add_argument('--layer', default=4, type=int)
parser.add_argument('--classifiers_path', action='store_true')
parser.add_argument('--optimizer', default='SGD', type=str)
# parser.add_argument('--scheduler_milestones', nargs='+', type=int)
args = parser.parse_args()
device = torch.device(f'cuda:{args.gpu}')
model_arch = args.model_arch
learning_rate = args.learning_rate
start_epoch = args.start_epoch
num_epoch = args.num_epoch
model_saving_rate = args.model_saving_rate
# toTrain = args.train
# toEvaluate = args.evaluate
evaluation_rate = args.evaluation_rate
checkpoint = args.checkpoint
# scheduler_milestones = args.scheduler_milestones
save_settings = args.save_settings
model_dir = f'./training_models/{args.model_dir}'
img_encoder_path = f'{model_dir}/{args.img_encoder_path}'
classifiers_path = args.classifiers_path
normalize = args.normalize
# ------------------------------- #
# Config logger
# ------------------------------- #
train_logger = setup_logger('train_logger', f'{model_dir}/gcn_train.log')
if save_settings:
# ------------------------------- #
# Saving training parameters
# ------------------------------- #
train_logger.info(f'{model_arch} Model: {img_encoder_path}')
train_logger.info(f'Attention Layer: args.layer')
train_logger.info(f'Learning rate: {learning_rate}')
train_logger.info(f'Optimizer: {args.optimizer}')
# ------------------------------- #
# Load extracted knowledge graph
# ------------------------------- #
knowledge_graph = Graph()
classFile_to_superclasses, superclassID_to_wikiID =\
knowledge_graph.class_file_to_superclasses(1, [1,2])
edges = knowledge_graph.edges
nodes = knowledge_graph.nodes
####################
# Prepare Data Set #
####################
print('preparing dataset')
base_cls, val_cls, support_cls = get_splits()
base = MiniImageNet('base', base_cls, val_cls, support_cls, classFile_to_superclasses)
base_loader = DataLoader(base, batch_size=256, shuffle=False, num_workers=4)
# ------------------------------- #
# Load image encoder model
# ------------------------------- #
# image encoder
if model_arch == 'conv4':
img_encoder = models.Conv4Attension(len(base_cls), len(superclassID_to_wikiID))
if model_arch == 'resnet10':
img_encoder = models.resnet10(len(base_cls), len(superclassID_to_wikiID))
if model_arch == 'resnet18':
img_encoder = models.resnet18(len(base_cls), len(superclassID_to_wikiID))
img_encoder.load_state_dict(torch.load(f'{img_encoder_path}'))
img_encoder.to(device)
img_feature_dim = img_encoder.dim_feature
# ------------------------------- #
# get class classifiers
# ------------------------------- #
if classifiers_path:
with open(f'{model_dir}/base_classifiers.pkl', 'rb') as f:
classifiers = pickle.load(f)
else:
classifiers = get_classifier(img_encoder, img_feature_dim, len(base_cls), base_loader, 'base', normalize, model_dir, device)
# import ipdb; ipdb.set_trace()
# ------------------------------- #
# Init GCN model
# ------------------------------- #
layer = 2
layer_nums = [768, 2048, img_feature_dim]
layer_nums_str = "".join([str(a)+' ' for a in layer_nums])
if save_settings:
train_logger.info(f'GCN layers: {layer_nums_str}')
GCN = models.GCN(layer, layer_nums, edges)
# GCN = models.GCN(edges)
GCN.to(device)
# import ipdb; ipdb.set_trace()
# ------------------------------- #
# Other neccessary parameters
# ------------------------------- #
classFile_to_wikiID = get_classFile_to_wikiID()
base_cls_index = [nodes.index(classFile_to_wikiID[base.id_to_class_name[i]]) for i in range(len(base_cls))]
# support_cls_index = [nodes.index(classFile_to_wikiID[base.id_to_class_name[i]]) for i in range(len(support_cls))]
sentence_transformer = SentenceTransformer('paraphrase-distilroberta-base-v1')
desc_embeddings = knowledge_graph.encode_desc(sentence_transformer)
desc_embeddings =desc_embeddings.to(device)
# ------------------------------- #
# Training settings
# ------------------------------- #
# criterion = torch.nn.MSELoss()
criterion = torch.nn.CosineEmbeddingLoss()
optimizer = torch.optim.SGD(GCN.parameters(), lr=learning_rate, momentum=0.9, weight_decay=1e-4, nesterov=True)
# optimizer = torch.optim.Adam(GCN.parameters(), lr=learning_rate, weight_decay=1e-4)
batch_time = AverageMeter() # forward prop. + back prop. time
losses = AverageMeter() # loss
GCN.train()
start = time.time()
classifiers = classifiers.to(device)
loss_target = torch.ones(classifiers.shape[0]).to(device)
for epoch in range(start_epoch, start_epoch+num_epoch):
base_embeddings = GCN(desc_embeddings)[base_cls_index]
# import ipdb; ipdb.set_trace()
# loss = criterion(base_embeddings, classifiers)
loss = criterion(base_embeddings, classifiers, loss_target)
loss.backward()
optimizer.step()
losses.update(loss.item())
# print(loss.item())
batch_time.update(time.time() - start)
if epoch % 200 == 0: # print every 30 epoch
train_logger.info(f'[{epoch:3d}/{start_epoch+num_epoch-1}]'
f' batch_time: {batch_time.avg:.2f} loss: {losses.avg:.3f}')
batch_time.reset()
losses.reset()
start = time.time()
if epoch % 1000 == 0:
torch.save(GCN.state_dict(), f'{model_dir}/gcn_{epoch}.pth')
train_logger.info("="*60)
# def evaluate(GCN, classifiers, device, support_cls_index, criterion, classifier_path=None):
# GCN.eval()
# if classifiers_path != None:
# with open(f'{model_dir}/classifiers.pkl', 'rb') as f:
# classifiers = pickle.load(f)
# else:
# classifiers = get_classifier(img_encoder, img_feature_dim, len(base_cls), base_loader, 'base', normalize, model_dir, device)
# loss_target = torch.ones(classifiers.shape[0]).to(device)
# with torch.no_grad():
# support_embeddings = GCN(desc_embeddings)[support_cls_index]
# loss = criterion(support_embeddings, classifiers, loss_target)
# return loss.item()
if __name__ == '__main__':
train()