python3 prepare_pascal3d.py \ --config config/datasets/pascal3d_runtime.yaml
Prepare data without centering and resize:
python3 prepare_pascal3d.py \ --config config/datasets/pascal3d_ori.yaml
Parameters. The parameters are loaded from the .yaml
files.
pad_texture
: IfTrue
, use describable textures when padding.occ_levels
: The occlusion levels we prepare for training and validation data.single_mesh
: Type of mesh we generate.root_path
: Path to the generated data.training_only
: IfTrue
, skip validation data.image_sizes
: Image sizes of the output images.mesh_path
: Path to the meshes used for generating 3D keypoint annotations.prepare_mode
: Preparation mode,first
orall
.augment_by_dist
: IfTrue
, augment samples by object distances (scales); commonly used for 6D pose estimation training.
python3 prepare_objectnet3d.py \ --config config/datasets/objectnet3d.yaml
Parameters. The parameters are loaded from the .yaml
files.
pad_texture
: IfTrue
, use describable textures when padding.single_mesh
: Type of mesh we generate.root_path
: Path to the generated data.training_only
: IfTrue
, skip validation data.image_sizes
: Image sizes of the output images.mesh_path
: Path to the meshes used for generating 3D keypoint annotations.prepare_mode
: Preparation mode,first
orall
.augment_by_dist
: IfTrue
, augment samples by object distances (scales); commonly used for 6D pose estimation training.
python3 prepare_ood_cv.py \ --config config/datasets/ood_cv.yaml
Parameters. The parameters are loaded from the .yaml
files.
nuisances
: Types of nuisances we consider.pad_texture
: IfTrue
, use describable textures when padding.occ_levels
: The occlusion levels we prepare for training and validation data.single_mesh
: Type of mesh we generate.root_path
: Path to the generated data.training_only
: IfTrue
, skip validation data.image_sizes
: Image sizes of the output images.mesh_path
: Path to the meshes used for generating 3D keypoint annotations.prepare_mode
: Preparation mode,first
orall
.augment_by_dist
: IfTrue
, augment samples by object distances (scales); commonly used for 6D pose estimation training.
First download ShapeNet v1 from shapenet.org. Then install Blender 2.90:
apt-get install -y libxi6 libgconf-2-4 libfontconfig1 libxrender1 wget https://download.blender.org/release/Blender2.90/blender-2.90.0-linux64.tar.xz tar -xf blender-2.90.0-linux64.tar.xz cd blender-2.90.0-linux64/2.90/python/bin ./python3.7m -m ensurepip ./python3.7m -m pip install numpy
Then run the following script.
python3 create_synthetic_shapenet.py \ --config config/datasets/synthetic_shapenet.yaml
Tetrahedra grids.
wget https://www.cs.jhu.edu/~wufeim/NeMo/tets.zip unzip tets.zip rm tets.zip