1
1
<h1 >Getting Started</h1 >
2
- <h2 >1. Installation</h2 >
2
+ <h2 >Installation</h2 >
3
3
<p class =" small-p " >You only need two things: Python 3 and your favourite Python IDE to get started. Then simply install via pip.</p >
4
4
5
5
``` python
6
6
pip install photonai
7
7
```
8
8
9
- <h2 >2. Setup New Analysis</h2 >
10
- Start by importing some utilities and creating a new Hyperpipe instance, naming the analysis and specifying where to save all outputs.
9
+ <h2 > Setup Default Analysis </h2 >
10
+ < h3 >Regression with default pipeline</ h3 >
11
11
12
12
``` python
13
- from sklearn.model_selection import ShuffleSplit, KFold
13
+ from sklearn.datasets import load_diabetes
14
+ from photonai import RegressionPipe
15
+
16
+ my_pipe = RegressionPipe(' diabetes' )
17
+ X, y = load_diabetes(return_X_y = True )
18
+ my_pipe.fit(X, y)
19
+ ```
20
+
21
+ <h3 >Classification with modified default pipeline</h2 >
22
+ ``` python
23
+ from photonai import ClassificationPipe
14
24
from sklearn.datasets import load_breast_cancer
15
- from photonai.base import Hyperpipe, PipelineElement, Switch
16
- from photonai.optimization import IntegerRange, FloatRange
25
+ from sklearn.model_selection import ShuffleSplit
17
26
18
- pipe = Hyperpipe(' basic_pipe' , project_folder = ' ./' )
27
+ X, y = load_breast_cancer(return_X_y = True )
28
+ my_pipe = ClassificationPipe(name = ' breast_cancer_analysis' ,
29
+ inner_cv = ShuffleSplit(n_splits = 2 ),
30
+ scaling = True ,
31
+ imputation = False ,
32
+ imputation_nan_value = None ,
33
+ feature_selection = False ,
34
+ dim_reduction = True ,
35
+ n_pca_components = 10 )
36
+ my_pipe.fit(X, y)
19
37
```
20
38
21
39
22
- <h2 >3. Define training, optimization and testing parameters</h2 >
23
- Select parameters to customize the training, hyperparameter optimization and testing procedure.
40
+ <h2 >Or Setup New Custom Analysis</h2 >
24
41
42
+ Start by importing some utilities. and creating a new Hyperpipe instance, naming the analysis and specifying where to save all outputs.
43
+ Select parameters to customize the training, hyperparameter optimization and testing procedure.
25
44
Particularly, you can choose the hyperparameter optimization strategy, set parameters, choose performance metrics
26
45
and choose the performance metric to minimize or maximize, respectively.
27
46
28
- ``` python
47
+ ``` python
48
+ from sklearn.model_selection import ShuffleSplit, KFold
49
+ from sklearn.datasets import load_breast_cancer
50
+ from photonai.base import Hyperpipe, PipelineElement, Switch
51
+ from photonai.optimization import IntegerRange, FloatRange
52
+
29
53
pipe = Hyperpipe(' basic_pipe' , project_folder = ' ./' ,
30
54
31
55
# choose hyperparameter optimization strategy
@@ -43,7 +67,7 @@ pipe = Hyperpipe('basic_pipe', project_folder='./',
43
67
inner_cv = KFold(n_splits = 10 ))
44
68
```
45
69
46
- <h2 >4. Build custom pipeline</ h2 >
70
+ <h3 >Add pipeline elements to your liking.</ h3 >
47
71
Select and arrange normalization, dimensionality reduction, feature selection, data augmentation,
48
72
over- or undersampling algorithms in simple or parallel data streams. You can integrate
49
73
custom algorithms or choose from our wide range of pre-registered algorithms from established toolboxes.
@@ -69,7 +93,7 @@ or_element += PipelineElement('SVC',
69
93
pipe += or_element
70
94
```
71
95
72
- <h2 >5. Load Data and Train</ h2 >
96
+ <h3 >Finally, load data and start training!</ h3 >
73
97
Load your data and start the (nested-) cross-validated hyperparameter optimization, training and evaluation procedure.
74
98
You will see an extensive output to monitor the hyperparameter optimization progress, see the results and track the
75
99
best performances so far.
0 commit comments