forked from Kaixhin/imitation-learning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathenvironments.py
104 lines (75 loc) · 3.6 KB
/
environments.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
from logging import ERROR
import d4rl_pybullet
import gym
import numpy as np
import torch
from training import TransitionDataset
gym.logger.set_level(ERROR) # Ignore warnings from Gym logger
D4RL_ENV_NAMES = ['ant-bullet-medium-v0', 'halfcheetah-bullet-medium-v0', 'hopper-bullet-medium-v0', 'walker2d-bullet-medium-v0']
# Test environment for testing the code
class PendulumEnv():
def __init__(self, env_name=''):
self.env = gym.make('Pendulum-v0')
self.env.action_space.high, self.env.action_space.low = torch.as_tensor(self.env.action_space.high), torch.as_tensor(self.env.action_space.low) # Convert action space for action clipping
def reset(self):
state = self.env.reset()
return torch.tensor(state, dtype=torch.float32).unsqueeze(dim=0) # Add batch dimension to state
def step(self, action):
action = action.clamp(min=self.env.action_space.low, max=self.env.action_space.high) # Clip actions
state, reward, terminal, _ = self.env.step(action[0].detach().numpy()) # Remove batch dimension from action
return torch.tensor(state, dtype=torch.float32).unsqueeze(dim=0), reward, terminal # Add batch dimension to state
def seed(self, seed):
return self.env.seed(seed)
def render(self):
return self.env.render()
def close(self):
self.env.close()
@property
def observation_space(self):
return self.env.observation_space
@property
def action_space(self):
return self.env.action_space
def get_dataset(self, size=0, dtype=torch.float):
return []
class D4RLEnv():
def __init__(self, env_name):
assert env_name in D4RL_ENV_NAMES
self.env = gym.make(env_name)
self.env.action_space.high, self.env.action_space.low = torch.as_tensor(self.env.action_space.high), torch.as_tensor(self.env.action_space.low) # Convert action space for action clipping
def reset(self):
state = self.env.reset()
return torch.tensor(state, dtype=torch.float32).unsqueeze(dim=0) # Add batch dimension to state
def step(self, action):
action = action.clamp(min=self.env.action_space.low, max=self.env.action_space.high) # Clip actions
state, reward, terminal, _ = self.env.step(action[0].detach().numpy()) # Remove batch dimension from action
return torch.tensor(state, dtype=torch.float32).unsqueeze(dim=0), reward, terminal # Add batch dimension to state
def seed(self, seed):
return self.env.seed(seed)
def render(self):
return self.env.render()
def close(self):
self.env.close()
@property
def observation_space(self):
return self.env.observation_space
@property
def action_space(self):
return self.env.action_space
def get_dataset(self, size=0, subsample=20):
dataset = self.env.get_dataset()
N = dataset['rewards'].shape[0]
dataset_out = {'states': torch.as_tensor(dataset['observations'][:-1], dtype=torch.float32),
'actions': torch.as_tensor(dataset['actions'][:-1], dtype=torch.float32),
'rewards': torch.as_tensor(dataset['rewards'][:-1], dtype=torch.float32),
'next_states': torch.as_tensor(dataset['observations'][1:], dtype=torch.float32),
'terminals': torch.as_tensor(dataset['terminals'][:-1], dtype=torch.float32)}
# Postprocess
if size > 0 and size < N:
for key in dataset_out.keys():
dataset_out[key] = dataset_out[key][0:size]
if subsample > 0:
for key in dataset_out.keys():
dataset_out[key] = dataset_out[key][0::subsample]
return TransitionDataset(dataset_out)
ENVS = {'ant': D4RLEnv, 'halfcheetah': D4RLEnv, 'hopper': D4RLEnv, 'pendulum': PendulumEnv, 'walker2d': D4RLEnv}