-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_deflection_prestressed_beam_03.py
178 lines (152 loc) · 6.68 KB
/
test_deflection_prestressed_beam_03.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
# -*- coding: utf-8 -*-
from __future__ import division
'''Test for checking the deflections in a prestressed concrete beam.
Data for the problem and approximate calculation are taken from
Example 4.1 of the topic 4 of course "Prestressed Concrete Design
(SAB 4323) by Baderul Hisham Ahmad
ocw.utm.my
Problem statement:
Determine the midspan deflection of a beam:
(i) at transfer with an inertial prestress force of 6800kN;
(ii) under an imposed load of 30 kN/m when the prestress force has been
reduced to 4500 kN.
Take self weight of beam = 11.26 kN/m; I =0.06396m4 ; E = 28 x 10^6 kN/m2
'''
'''Try 3: I set initial stress in prestressing steel = 6800 kN/m2.
Before calculating I try to impose a strain in order to reduce the stress
from 6800 kN/m2 to 4500 kN/m2 (lines 157-162)
results: idem to case 1. The following error arises: ElementBodyLoad::applyLoad; el number of pointers no coincide con el de identifiers.
'''
import math
import xc_base
import geom
import xc
from materials import typical_materials as tm
from materials.prestressing import prestressed_concrete as presconc
from rough_calculations import ng_prestressed_concrete as ng_presconc
from model import predefined_spaces
from solution import predefined_solutions
from model.mesh import finit_el_model as fem
from actions import loads
#DATA
#Geometry
span=24 #span of the beam [m]
hBeam=1.305406 #height of the cross-section [m]. Parallel to local z-axis
wBeam= 0.3450267 #width of the cross-section [m]. Parallel to local y-axis
Abeam=hBeam*wBeam #cross-section area of the beam[m2]
Iybeam=1/12.*hBeam*wBeam**3 #moment of inertia of the beam cross-section [m4]
Izbeam=1/12.*wBeam*hBeam**3 #moment of inertia of the beam cross-section [m4]
deltaTendon=0.26
nDivLines=8 #number of elements in each line
#Material properties
Ec=28e6 #modulus of elasticity of concrete [kPa]
Ep=Ec*7.5 #modulus of elasticity of prestressing steel
Ep=Ec*1e-3 #modulus of elasticity of prestressing steel (allow big deflection)
nuc=0.2 #coefficient of Poisson of concrete
densc= 2.5 #specific mass of concrete (t/m3)
fy= 1171e3 # Yield stress of the steel expressed in kPa.
Aps=1 #area of tendon cross-section [m2]
#Prestress
fpi=6800/Aps #initial stress in the tendon [kPa]
fps=4500/Aps #stress in the tendon in service [kPa]
#Loads
Wsw=Abeam*densc*10 #self-weight uniform load on beam [kN/m]
#END DATA
# XC model of the beam
# Problem type
FEcase= xc.FEProblem()
prep= FEcase.getPreprocessor
points=prep.getMultiBlockTopology.getPoints
lines=prep.getMultiBlockTopology.getLines
sets=prep.getSets
nodes= prep.getNodeHandler
modelSpace= predefined_spaces.StructuralMechanics3D(nodes)
#Points and lines beam
beamSet=sets.defSet('beamSet')
beamPoints= beamSet.getPoints
beamLines= beamSet.getLines
for i in range(4):
p=points.newPntFromPos3d(geom.Pos3d(0,i*span/3,0))
beamPoints.append(p)
if(i>0):
l= lines.newLine(beamPoints[i-1].tag,beamPoints[i].tag)
beamLines.append(l)
#Points and lines tendon
tendonSet=sets.defSet('tendonSet')
tendonPoints= tendonSet.getPoints
tendonLines= tendonSet.getLines
for i in range(1,3):
p= points.newPntFromPos3d(geom.Pos3d(0,i*span/3,-deltaTendon))
tendonPoints.append(p)
tendonLines.append(lines.newLine(beamPoints[0].tag,tendonPoints[0].tag))
tendonLines.append(lines.newLine(tendonPoints[0].tag,tendonPoints[1].tag))
tendonLines.append(lines.newLine(tendonPoints[1].tag,beamPoints[3].tag))
#BEAM
#Geometric section
from materials.sections import section_properties as sectpr
geomSectBeam=sectpr.RectangularSection(name='geomSectBeam',b=wBeam,h=hBeam)
# Material definition
concrete=tm.MaterialData(name='concrete',E=Ec,nu=nuc,rho=densc)
beamMat=tm.BeamMaterialData(name= 'beamMat', section=geomSectBeam, material=concrete)
beamMat.setupElasticShear3DSection(prep)
#Meshing
for l in beamSet.getLines:
l.nDiv=nDivLines
beam_mesh=fem.LinSetToMesh(linSet=beamSet,matSect=beamMat,elemSize=None,vDirLAxZ=xc.Vector([1,0,0]),elemType='ElasticBeam3d',dimElemSpace=3,coordTransfType='linear')
beam_mesh.generateMesh(prep)
#Boundary conditions
modelSpace.fixNode000_FFF(0)
endnode=beamSet.getNodes.getNearestNode(geom.Pos3d(0,span,0))
modelSpace.fixNode000_FFF(endnode.tag)
#TENDON
#Material
prestressingSteel= tm.defCableMaterial(preprocessor=prep, name="prestressingSteel",E=Ep,prestress=fpi,rho=0.0)
#Meshing
for l in tendonSet.getLines:
l.nDiv=nDivLines
corCooTr=modelSpace.newLinearCrdTransf(trfName='corCooTr',xzVector=xc.Vector([1,0,0]))
tendon_mesh=fem.LinSetToMesh(linSet=tendonSet,matSect=prestressingSteel,elemSize=None,vDirLAxZ=xc.Vector([1,0,0]),elemType='Truss',dimElemSpace=3,coordTransfType=None)
tendon_mesh.generateMesh(prep)
for e in tendonSet.getElements:
e.area=Aps
# Connection between tendon and beam
gluedDOFs= [0,1,2,3,4,5]
for n1,n2 in zip(beamLines[0].getNodes(),tendonLines[0].getNodes()):
modelSpace.constraints.newEqualDOF(n1.tag,n2.tag,xc.ID(gluedDOFs))
for n1,n2 in zip(beamLines[1].getNodes(),tendonLines[1].getNodes()):
modelSpace.constraints.newEqualDOF(n1.tag,n2.tag,xc.ID(gluedDOFs))
for n1,n2 in zip(beamLines[2].getNodes(),tendonLines[2].getNodes()):
modelSpace.constraints.newEqualDOF(n1.tag,n2.tag,xc.ID(gluedDOFs))
'''
#Plot
from postprocess.xcVtk.FE_model import vtk_FE_graphic
defDisplay= vtk_FE_graphic.RecordDefDisplayEF()
defDisplay.displayMesh(xcSets=[beamSet,tendonSet],fName= None,caption='Mesh',nodeSize=0.0010,scaleConstr=0.30)
'''
# Loads definition
cargas= prep.getLoadHandler
lPatterns= cargas.getLoadPatterns
#Load modulation.
ts= lPatterns.newTimeSeries("constant_ts","ts")
lPatterns.currentTimeSeries= "ts"
#Load case definition
lp0= lPatterns.newLoadPattern("default","0")
lPatterns.currentLoadPattern='0'
# #We add the load case to domain.
lPatterns.addToDomain('0') # THE ERROR IS HERE (WE ADD TO DOMAIN TOO EARLY)
strain=(fps-fpi)/Ep
for e in tendonSet.getElements:
eLoad= lp0.newElementalLoad("truss_temp_load")
eLoad.elementTags= xc.ID([e.tag])
eLoad.eps1= strain
eLoad.eps2= strain
#We add the load case to domain.
#lPatterns.addToDomain('0') #THE SOLUTION IS HERE
analisis= predefined_solutions.simple_static_linear(FEcase)
analOk= analisis.analyze(1)
print 'CCCCCCCCCCCCCCCCCCCCCCCCCCCCC'
from postprocess.xcVtk.FE_model import quick_graphics as QGrph
from postprocess.xcVtk import vtk_graphic_base
lcs=QGrph.QuickGraphics(FEcase)
lcs.displayDispRot(itemToDisp='uZ',setToDisplay=beamSet+tendonSet,fConvUnits=1e3,unitDescription='beam [mm]. Phase 1: prestressing of tendon',viewDef= vtk_graphic_base.CameraParameters("XNeg",1),fileName=None,defFScale=2e2)
lcs.displayIntForcDiag(itemToDisp='N',setToDisplay=tendonSet,fConvUnits= 1,scaleFactor=1,unitDescription='[kN,m]',viewDef=vtk_graphic_base.CameraParameters("ZNeg",1),fileName=None,defFScale=1)