Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

(-215:Assertion failed) !ssize.empty() in function 'resize' #19

Open
Linda-L opened this issue Mar 21, 2021 · 1 comment
Open

(-215:Assertion failed) !ssize.empty() in function 'resize' #19

Linda-L opened this issue Mar 21, 2021 · 1 comment

Comments

@Linda-L
Copy link

Linda-L commented Mar 21, 2021

/home/ll/anaconda3/envs/t1.2/bin/python /media/ll/L/Efficient-Segmentation-Networks/train.py
1.2
=====> input size:(512, 1024)
Namespace(batch_size=4, classes=19, cuda=True, dataset='cityscapes', gpus='0', input_size='512,1024', logFile='log.txt', lr=0.0005, lr_schedule='warmpoly', max_epochs=1000, model='FastSCNN', num_cycles=1, num_workers=4, optim='adam', poly_exp=0.9, random_mirror=True, random_scale=True, resume='', savedir='./checkpoint/', train_type='trainval', use_focal=True, use_label_smoothing=False, use_lovaszsoftmax=False, use_ohem=False, warmup_factor=0.3333333333333333, warmup_iters=500)
=====> use gpu id: '0'
=====> set Global Seed: 1234
=====> building network
=====> computing network parameters and FLOPs
the number of parameters: 1138051 ==> 1.14 M
find file: ./dataset/inform/cityscapes_inform.pkl
length of dataset: 122
length of dataset: 59
=====> Dataset statistics
data['classWeights']: [ 1.4705521 9.505282 10.492059 10.492059 10.492059 10.492059
10.492059 10.492059 10.492059 10.492059 10.492059 10.492059
10.492059 10.492059 10.492059 10.492059 10.492059 10.492059
5.131664 ]
mean and std: [72.3924 82.90902 73.158325] [45.319206 46.15292 44.91484 ]
single GPU for training
=====> beginning training
=====> the number of iterations per epoch: 30
Traceback (most recent call last):
File "/media/ll/L/Efficient-Segmentation-Networks/train.py", line 401, in
train_model(args)
File "/media/ll/L/Efficient-Segmentation-Networks/train.py", line 218, in train_model
lossTr, lr = train(args, trainLoader, model, criteria, optimizer, epoch)
File "/media/ll/L/Efficient-Segmentation-Networks/train.py", line 301, in train
for iteration, batch in enumerate(train_loader, 0):
File "/home/ll/anaconda3/envs/t1.2/lib/python3.7/site-packages/torch/utils/data/dataloader.py", line 819, in next
return self._process_data(data)
File "/home/ll/anaconda3/envs/t1.2/lib/python3.7/site-packages/torch/utils/data/dataloader.py", line 846, in _process_data
data.reraise()
File "/home/ll/anaconda3/envs/t1.2/lib/python3.7/site-packages/torch/_utils.py", line 369, in reraise
raise self.exc_type(msg)
cv2.error: Caught error in DataLoader worker process 0.
Original Traceback (most recent call last):
File "/home/ll/anaconda3/envs/t1.2/lib/python3.7/site-packages/torch/utils/data/_utils/worker.py", line 178, in _worker_loop
data = fetcher.fetch(index)
File "/home/ll/anaconda3/envs/t1.2/lib/python3.7/site-packages/torch/utils/data/_utils/fetch.py", line 44, in fetch
data = [self.dataset[idx] for idx in possibly_batched_index]
File "/home/ll/anaconda3/envs/t1.2/lib/python3.7/site-packages/torch/utils/data/_utils/fetch.py", line 44, in
data = [self.dataset[idx] for idx in possibly_batched_index]
File "/media/ll/L/Efficient-Segmentation-Networks/dataset/cityscapes.py", line 64, in getitem
label = cv2.resize(label, None, fx=f_scale, fy=f_scale, interpolation=cv2.INTER_NEAREST)
cv2.error: OpenCV(4.5.1) /tmp/pip-req-build-7m_g9lbm/opencv/modules/imgproc/src/resize.cpp:4051: error: (-215:Assertion failed) !ssize.empty() in function 'resize'

Process finished with exit code 1

@GitHubmalajava
Copy link

I use the dataset is cityscapes but have a error: ValueError: num_samples should be a positive integer value, but got num_samples=0 .what should be do

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants