diff --git a/README.md b/README.md index b905942618..d0738eaa21 100644 --- a/README.md +++ b/README.md @@ -44,7 +44,7 @@ Choose your path: ## Features - **Various models**: LLaMA, Mistral, Mixtral-MoE, Qwen, Yi, Gemma, Baichuan, ChatGLM, Phi, etc. -- **Integrated methods**: (Continuous) pre-training, supervised fine-tuning, reward modeling, PPO and DPO. +- **Integrated methods**: (Continuous) pre-training, supervised fine-tuning, reward modeling, PPO, DPO and ORPO. - **Scalable resources**: 32-bit full-tuning, 16-bit freeze-tuning, 16-bit LoRA and 2/4/8-bit QLoRA via AQLM/AWQ/GPTQ/LLM.int8. - **Advanced algorithms**: GaLore, DoRA, LongLoRA, LLaMA Pro, LoRA+, LoftQ and Agent tuning. - **Practical tricks**: FlashAttention-2, Unsloth, RoPE scaling, NEFTune and rsLoRA. diff --git a/README_zh.md b/README_zh.md index 5c81be44de..460784b984 100644 --- a/README_zh.md +++ b/README_zh.md @@ -44,7 +44,7 @@ https://github.com/hiyouga/LLaMA-Factory/assets/16256802/ec36a9dd-37f4-4f72-81bd ## 项目特色 - **多种模型**:LLaMA、Mistral、Mixtral-MoE、Qwen、Yi、Gemma、Baichuan、ChatGLM、Phi 等等。 -- **集成方法**:(增量)预训练、指令监督微调、奖励模型训练、PPO 训练和 DPO 训练。 +- **集成方法**:(增量)预训练、指令监督微调、奖励模型训练、PPO 训练、DPO 训练和 ORPO 训练。 - **多种精度**:32 比特全参数微调、16 比特冻结微调、16 比特 LoRA 微调和基于 AQLM/AWQ/GPTQ/LLM.int8 的 2/4/8 比特 QLoRA 微调。 - **先进算法**:GaLore、DoRA、LongLoRA、LLaMA Pro、LoRA+、LoftQ 和 Agent 微调。 - **实用技巧**:FlashAttention-2、Unsloth、RoPE scaling、NEFTune 和 rsLoRA。 diff --git a/src/llmtuner/webui/components/eval.py b/src/llmtuner/webui/components/eval.py index 4d2fe5c0c0..a1dae98c56 100644 --- a/src/llmtuner/webui/components/eval.py +++ b/src/llmtuner/webui/components/eval.py @@ -70,7 +70,7 @@ def create_eval_tab(engine: "Engine") -> Dict[str, "Component"]: cmd_preview_btn.click(engine.runner.preview_eval, input_elems, output_elems, concurrency_limit=None) start_btn.click(engine.runner.run_eval, input_elems, output_elems) - stop_btn.click(engine.runner.set_abort, queue=False) + stop_btn.click(engine.runner.set_abort) resume_btn.change(engine.runner.monitor, outputs=output_elems, concurrency_limit=None) return elem_dict diff --git a/src/llmtuner/webui/components/train.py b/src/llmtuner/webui/components/train.py index 9c9f143e1f..9b2be6b2e4 100644 --- a/src/llmtuner/webui/components/train.py +++ b/src/llmtuner/webui/components/train.py @@ -232,7 +232,7 @@ def create_train_tab(engine: "Engine") -> Dict[str, "Component"]: concurrency_limit=None, ) start_btn.click(engine.runner.run_train, input_elems, output_elems) - stop_btn.click(engine.runner.set_abort, queue=False) + stop_btn.click(engine.runner.set_abort) resume_btn.change(engine.runner.monitor, outputs=output_elems, concurrency_limit=None) dataset_dir.change(list_dataset, [dataset_dir, training_stage], [dataset], queue=False)