-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdefences.py
400 lines (332 loc) · 17.1 KB
/
defences.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
import numpy as np
from collections import defaultdict
import torch
import pdb
import csv
class DefenseTypes:
NoDefense = 'NoDefense'
Krum = 'Krum'
TrimmedMean = 'TrimmedMean'
Bulyan = 'Bulyan'
MedianMean = 'MedianMean'
MedianMedian = 'MedianMedian'
MedianMeanKmed = 'MedianMeanKmed'
MedianMeanRange = 'MedianMeanRange'
MedianMeanK = 'MedianMeanK'
MedianMeanNumber = 'MedianMeanNumber'
MedianMeanNEUP = 'MedianMeanNEUP'
def __str__(self):
return self.value
def no_defense(users_grads, users_count, corrupted_count, group_size = 3, rate = 10, attack_std = 0.2):
# pdb.set_trace()
return torch.mean(users_grads, axis=0)
def _krum_create_distances(users_grads):
distances = defaultdict(dict)
for i in range(len(users_grads)):
for j in range(i):
distances[i][j] = distances[j][i] = np.linalg.norm(users_grads[i] - users_grads[j])
return distances
def krum(users_grads, users_count, corrupted_count, group_size = 3,distances=None,return_index=False, debug=False):
if not return_index:
assert users_count >= 2*corrupted_count + 1,('users_count>=2*corrupted_count + 3', users_count, corrupted_count)
non_malicious_count = users_count - corrupted_count
minimal_error = 1e20
minimal_error_index = -1
if distances is None:
distances = _krum_create_distances(users_grads)
for user in distances.keys():
errors = sorted(distances[user].values())
current_error = sum(errors[:non_malicious_count])
if current_error < minimal_error:
minimal_error = current_error
minimal_error_index = user
if return_index:
return minimal_error_index
else:
return users_grads[minimal_error_index]
# def median_mean(users_grads, users_count, corrupted_count, group_size = 3):
# # pdb.set_trace()
# number_to_consider = int((users_grads.shape[0] - corrupted_count)*0.6) - 1
# # number_to_consider = 5
# device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# current_grads = torch.zeros(users_grads.shape[1], dtype = users_grads.dtype).to(device)
# for i, param_across_users in enumerate(users_grads.T):
# # print("i is", i)
# if i == 0: # import pdb;pdb.set_trace()
# mean_vector = torch.zeros(group_size).to(device)
# num_each_group = int(len(param_across_users) / group_size)
# if num_each_group * group_size == len(param_across_users):
# for ii in range(group_size):
# mean_vector[ii] = torch.mean(param_across_users[ii*num_each_group:(ii+1)*num_each_group])
# else:
# for ii in range(group_size-1):
# mean_vector[ii] = torch.mean(param_across_users[ii*num_each_group:(ii+1)*num_each_group])
# mean_vector[group_size-1] = torch.mean(param_across_users[(group_size-1)*num_each_group:])
# med = torch.median(mean_vector)
# c = (param_across_users - med).abs() < 0.3 * abs(med)
# # pdb.set_trace()
# indices = c.nonzero()
# break
# select_users_grads = torch.mean(users_grads[indices,:],dim =0)
# return select_users_grads.view(-1).to(device)
# this is a very good version
def median_mean_NEUP(users_grads, users_count, corrupted_count, group_size = 3, rate = 10):
# pdb.set_trace()
number_to_consider = int(users_grads.shape[0] *0.6) - 1
# number_to_consider = int((users_grads.shape[0] - corrupted_count)*0.6) - 1
# number_to_consider = 5
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
current_grads = torch.zeros(users_grads.shape[1], dtype = users_grads.dtype).to(device)
i = torch.randint(0, users_count,(1,))
# for i, param_across_users in enumerate(users_grads.T):
param_across_users = users_grads.T[i][0].view(-1)
# for i, param_across_users in enumerate(users_grads.T):
# print("i is", i)
# if i == 0: # import pdb;pdb.set_trace()
mean_vector = torch.zeros(group_size).to(device)
num_each_group = int(len(param_across_users) / group_size)
if num_each_group * group_size == len(param_across_users):
for ii in range(group_size):
mean_vector[ii] = torch.mean(param_across_users[ii*num_each_group:(ii+1)*num_each_group])
else:
for ii in range(group_size-1):
mean_vector[ii] = torch.mean(param_across_users[ii*num_each_group:(ii+1)*num_each_group])
mean_vector[group_size-1] = torch.mean(param_across_users[(group_size-1)*num_each_group:])
med = torch.median(mean_vector)
c = torch.abs(param_across_users - med) < torch.abs(rate* med)
# pdb.set_trace()
# c = (param_across_users - med).abs() < (0.1* med)
indices = c.nonzero()
print("indices number is", len(indices))
# break
good_vals = param_across_users[indices]
# current_grads[i] = torch.mean(good_vals)
select_users_grads = torch.mean(users_grads[indices,:],dim =0)
# pdb.set_trace()
# current_grads[i] = np.median(mean_vector)
return select_users_grads.view(-1).to(device)
def median_mean_range(users_grads, users_count, corrupted_count, group_size = 3, rate = 10, attack_std = 0.2):
# pdb.set_trace()
number_to_consider = int(users_grads.shape[0] *0.6) - 1
# number_to_consider = int((users_grads.shape[0] - corrupted_count)*0.6) - 1
# number_to_consider = 5
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# pdb.set_trace()
current_grads = torch.zeros(users_grads.shape[1], dtype = users_grads.dtype).to(device)
# tem_indices = []
for sample_times in range(int(users_grads.shape[1]*0.01)):
i = torch.randint(0, users_count,(1,))
# for i, param_across_users in enumerate(users_grads.T):
param_across_users = users_grads.T[i][0]
mean_vector = torch.zeros(group_size).to(device)
num_each_group = int(len(param_across_users) / group_size)
if num_each_group * group_size == len(param_across_users):
for ii in range(group_size):
mean_vector[ii] = torch.mean(param_across_users[ii*num_each_group:(ii+1)*num_each_group])
else:
for ii in range(group_size-1):
mean_vector[ii] = torch.mean(param_across_users[ii*num_each_group:(ii+1)*num_each_group])
mean_vector[group_size-1] = torch.mean(param_across_users[(group_size-1)*num_each_group:])
med = torch.median(mean_vector)
# cluster_mean = torch.mean(mean_vector)
small_indices = torch.argsort(torch.abs(mean_vector - med))[:2]
threshold = torch.abs(mean_vector[small_indices[1]] - med)
# smallest_value = torch.abs(mean_vector - med).min()
c = torch.abs(param_across_users - med) <= torch.abs(rate * threshold)
# pdb.set_trace()
# open the file in the write mode
if sample_times == 0:
with open('./logs/Krange_CIFAR10_attack_'+str(attack_std)+'_'+str(rate)+'.csv', "a") as fp:
fp.write(str(abs((rate * threshold).cpu().numpy())))
fp.write('\n')
# f = open('./logs/Krange_'+str(rate)+'.csv', 'w')
# # create the csv writer
# writer = csv.writer(f)
# # write a row to the csv file
# writer.writerow(torch.abs(rate * threshold).cpu().numpy())
# # close the file
# f.close()
indices = c.nonzero()
if sample_times == 0:
merged_indices = indices.view(-1)
else:
merged_indices = torch.cat((indices.view(-1), merged_indices), 0)
# smallest_value = torch.abs(param_across_users - cluster_mean).min()
# indices = torch.argsort(torch.abs(param_across_users - cluster_mean))[:number_to_consider]
ferquency_indices = torch.bincount(merged_indices)
# print("ferquency_indices is", ferquency_indices)
# pdb.set_trace()
d = ferquency_indices > 1
final_indices = d.nonzero()
include_malicious = final_indices < corrupted_count
include_malicious_count = include_malicious.nonzero()
log_filepath = './log_malicious'
with open(log_filepath, 'a') as fh:
fh.write("group_size:{}, k:{}, attack_std:{}, include_malicious_count:{},total_user:{},\n".format(group_size, rate, attack_std,include_malicious_count.shape[0], users_count))
# pdb.set_trace()
# c = torch.abs(param_across_users - cluster_mean) <= torch.abs(rate * smallest_value)
# indices = c.nonzero()
# print("indices number is", len(indices))
# pdb.set_trace()
# good_vals = param_across_users[indices]
# current_grads[i] = torch.mean(good_vals)
select_users_grads = torch.mean(users_grads[final_indices,:],dim =0)
return select_users_grads.view(-1).to(device)
# pdb.set_trace()
def median_mean_k_med(users_grads, users_count, corrupted_count, group_size = 3, rate = 10):
# pdb.set_trace()
number_to_consider = int(users_grads.shape[0] *0.6) - 1
# number_to_consider = int((users_grads.shape[0] - corrupted_count)*0.6) - 1
# number_to_consider = 5
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
current_grads = torch.zeros(users_grads.shape[1], dtype = users_grads.dtype).to(device)
i = torch.randint(0, users_count,(1,))
# for i, param_across_users in enumerate(users_grads.T):
param_across_users = users_grads.T[i][0].view(-1)
# for i, param_across_users in enumerate(users_grads.T):
# print("i is", i)
# if i == 0: # import pdb;pdb.set_trace()
mean_vector = torch.zeros(group_size).to(device)
num_each_group = int(len(param_across_users) / group_size)
if num_each_group * group_size == len(param_across_users):
for ii in range(group_size):
mean_vector[ii] = torch.mean(param_across_users[ii*num_each_group:(ii+1)*num_each_group])
else:
for ii in range(group_size-1):
mean_vector[ii] = torch.mean(param_across_users[ii*num_each_group:(ii+1)*num_each_group])
mean_vector[group_size-1] = torch.mean(param_across_users[(group_size-1)*num_each_group:])
med = torch.median(mean_vector)
c = torch.abs(param_across_users - med) < torch.abs(rate* med)
# pdb.set_trace()
# c = (param_across_users - med).abs() < (0.1* med)
indices = c.nonzero()
print("indices number is", len(indices))
# break
good_vals = param_across_users[indices]
# current_grads[i] = torch.mean(good_vals)
select_users_grads = torch.mean(users_grads[indices,:],dim =0)
# pdb.set_trace()
# current_grads[i] = np.median(mean_vector)
return select_users_grads.view(-1).to(device)
def median_mean_number(users_grads, users_count, corrupted_count, group_size = 3, rate = 10):
# pdb.set_trace()
number_to_consider = int(users_grads.shape[0] *0.6) - 1
# number_to_consider = int((users_grads.shape[0] - corrupted_count)*0.6) - 1
# number_to_consider = 5
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
current_grads = torch.zeros(users_grads.shape[1], dtype = users_grads.dtype).to(device)
# pdb.set_trace()
i = torch.randint(0, users_count,(1,))
# for i, param_across_users in enumerate(users_grads.T):
param_across_users = users_grads.T[i].view(-1)
mean_vector = torch.zeros(group_size).to(device)
num_each_group = int(len(param_across_users) / group_size)
if num_each_group * group_size == len(param_across_users):
for ii in range(group_size):
mean_vector[ii] = torch.mean(param_across_users[ii*num_each_group:(ii+1)*num_each_group])
else:
for ii in range(group_size-1):
mean_vector[ii] = torch.mean(param_across_users[ii*num_each_group:(ii+1)*num_each_group])
mean_vector[group_size-1] = torch.mean(param_across_users[(group_size-1)*num_each_group:])
med = torch.median(mean_vector)
# pdb.set_trace()
indices = torch.argsort(torch.abs(param_across_users - med))[:number_to_consider]
select_users_grads = torch.mean(users_grads[indices,:],dim =0)
# pdb.set_trace()
# current_grads[i] = np.median(mean_vector)
return select_users_grads.view(-1).to(device)
# return current_grads.to(device)
def median_mean_k(users_grads, users_count, corrupted_count, group_size = 3, rate = 10):
# pdb.set_trace()
number_to_consider = int(users_grads.shape[0] *0.6) - 1
# number_to_consider = int((users_grads.shape[0] - corrupted_count)*0.6) - 1
# number_to_consider = 5
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
current_grads = torch.zeros(users_grads.shape[1], dtype = users_grads.dtype).to(device)
i = torch.randint(0, users_count,(1,))
# for i, param_across_users in enumerate(users_grads.T):
param_across_users = users_grads.T[i][0].view(-1)
# for i, param_across_users in enumerate(users_grads.T):
# print("i is", i)
# if i == 0: # import pdb;pdb.set_trace()
mean_vector = torch.zeros(group_size).to(device)
num_each_group = int(len(param_across_users) / group_size)
if num_each_group * group_size == len(param_across_users):
for ii in range(group_size):
mean_vector[ii] = torch.mean(param_across_users[ii*num_each_group:(ii+1)*num_each_group])
else:
for ii in range(group_size-1):
mean_vector[ii] = torch.mean(param_across_users[ii*num_each_group:(ii+1)*num_each_group])
mean_vector[group_size-1] = torch.mean(param_across_users[(group_size-1)*num_each_group:])
med = torch.median(mean_vector)
# c = torch.abs(param_across_users - med) < torch.abs(50* med)
# # pdb.set_trace()
# # c = (param_across_users - med).abs() < (0.1* med)
# indices = c.nonzero()
# print("indices number is", len(indices))
# # break
# good_vals = param_across_users[indices]
# # current_grads[i] = torch.mean(good_vals)
# select_users_grads = torch.mean(users_grads[indices,:],dim =0)
# # pdb.set_trace()
x = torch.abs(param_across_users - med)**2
std = torch.sqrt(torch.mean(x))
c = (param_across_users - med).abs() < 1*std * rate/100
indices = c.nonzero()
# break
# good_vals = param_across_users[indices]
# current_grads[i] = torch.mean(good_vals)
# else:
# good_vals = param_across_users[indices]
# current_grads[i] = torch.mean(good_vals)
# pdb.set_trace()
select_users_grads = torch.mean(users_grads[indices,:],dim =0)
return select_users_grads.view(-1).to(device)
# return current_grads.to(device)
def median_median(users_grads, users_count, corrupted_count, group_size = 3, rate = 10):
number_to_consider = int(users_grads.shape[0] - corrupted_count) - 1
current_grads = np.empty((users_grads.shape[1],), users_grads.dtype)
group = group_size
for i, param_across_users in enumerate(users_grads.T):
# import pdb;pdb.set_trace()
mean_vector = np.zeros(group)
num_each_group = int(len(param_across_users) / group)
for ii in range(group):
mean_vector[ii] = np.median(param_across_users[ii*num_each_group:(ii+1)*num_each_group-1])
# med = np.median(param_across_users)
# good_vals = sorted(param_across_users - med, key=lambda x: abs(x))[:number_to_consider]
# current_grads[i] = np.mean(good_vals) + med
current_grads[i] = np.median(mean_vector)
return current_grads
def trimmed_mean(users_grads, users_count, corrupted_count, group_size = 3, rate = 10):
number_to_consider = int(users_grads.shape[0] - corrupted_count) - 1
current_grads = np.empty((users_grads.shape[1],), users_grads.dtype)
for i, param_across_users in enumerate(users_grads.T):
# import pdb;pdb.set_trace()
med = np.median(param_across_users)
good_vals = sorted(param_across_users - med, key=lambda x: abs(x))[:number_to_consider]
current_grads[i] = np.mean(good_vals) + med
return current_grads
def bulyan(users_grads, users_count, corrupted_count, rate = 10):
assert users_count >= 4*corrupted_count + 3
set_size = users_count - 2*corrupted_count
selection_set = []
distances = _krum_create_distances(users_grads)
while len(selection_set) < set_size:
currently_selected = krum(users_grads, users_count - len(selection_set), corrupted_count, distances, True)
selection_set.append(users_grads[currently_selected])
# remove the selected from next iterations:
distances.pop(currently_selected)
for remaining_user in distances.keys():
distances[remaining_user].pop(currently_selected)
return trimmed_mean(np.array(selection_set), len(selection_set), 2*corrupted_count)
defend = {DefenseTypes.Krum: krum,
DefenseTypes.TrimmedMean: trimmed_mean,
DefenseTypes.MedianMeanNEUP: median_mean_NEUP,
DefenseTypes.MedianMeanNumber: median_mean_number,
DefenseTypes.MedianMeanRange: median_mean_range,
DefenseTypes.MedianMedian: median_median,
DefenseTypes.MedianMeanKmed: median_mean_k_med,
DefenseTypes.MedianMeanK: median_mean_k,
DefenseTypes.NoDefense: no_defense,
DefenseTypes.Bulyan: bulyan}