-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathoptions.py
executable file
·87 lines (77 loc) · 4.13 KB
/
options.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
import argparse
import torch
def args_parser():
parser = argparse.ArgumentParser()
# federated arguments (Notation for the arguments followed from paper)
parser.add_argument('--epochs', type=int, default=200,
help="number of rounds of training")
parser.add_argument('--num_users', type=int, default=1,
help="number of users: K")
parser.add_argument('--frac', type=float, default=1,
help='the fraction of clients')
parser.add_argument('--batch_size', type=int, default=4096*2,
help="batch size")
parser.add_argument('--num_batches_per_step', type=int, default=1,
help="the number of local batches")
parser.add_argument('--lr', type=float, default=0.01,
help='learning rate')
parser.add_argument('--momentum', type=float, default=0.9,
help='SGD momentum (default: 0.9)')
parser.add_argument('--warmup_lr_epochs', type=int, default=5,
help="warmup epochs for lr")
parser.add_argument('--attack_method', type=int, default=0,
help="0 normal 1 FoE")
parser.add_argument('--foe_rate', type=int, default=3,
help='FoE attack rate')
parser.add_argument('--meank_rate', type=int, default=60,
help='meank_rate defense')
parser.add_argument('--en_defence', type=int, default=0,
help='enable defense')
parser.add_argument('--group_size', type=int, default=3,
help=' group_size')
parser.add_argument('--attack_rate', type=float, default=1,
help=' attack_rate')
parser.add_argument('--en_partial_att', type=int, default=0,
help=' en_partial_att')
# model arguments
parser.add_argument('--model', type=str, default='mlp', help='model name')
parser.add_argument('--kernel_num', type=int, default=9,
help='number of each kind of kernel')
parser.add_argument('--kernel_sizes', type=str, default='3,4,5',
help='comma-separated kernel size to \
use for convolution')
parser.add_argument('--num_channels', type=int, default=1, help="number \
of channels of imgs")
parser.add_argument('--norm', type=str, default='batch_norm',
help="batch_norm, layer_norm, or None")
parser.add_argument('--num_filters', type=int, default=32,
help="number of filters for conv nets -- 32 for \
mini-imagenet, 64 for omiglot.")
parser.add_argument('--max_pool', type=str, default='True',
help="Whether use max pooling rather than \
strided convolutions")
# other arguments
parser.add_argument('--dataset', type=str, default='mnist', help="name \
of dataset")
parser.add_argument('--num_classes', type=int, default=10, help="number \
of classes")
parser.add_argument('--gpu', default=None, type=int, help="To use cuda, set \
to a specific GPU ID. Default set to use CPU.")
parser.add_argument('--optimizer', type=str, default='sgd', help="type \
of optimizer")
parser.add_argument('--iid', type=int, default=1,
help='Default set to IID. Set to 0 for non-IID.')
parser.add_argument('--unequal', type=int, default=0,
help='whether to use unequal data splits for \
non-i.i.d setting (use 0 for equal splits)')
parser.add_argument('--stopping_rounds', type=int, default=10,
help='rounds of early stopping')
parser.add_argument('--verbose', type=int, default=1, help='verbose')
parser.add_argument('--seed', type=int, default=1, help='random seed')
args = parser.parse_args()
if torch.cuda.is_available():
args.gpu = 0
if args.gpu is not None:
args.gpu_id = args.gpu
args.schedule_lr_per_epoch = True
return args