-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_eval_utils.py
executable file
·197 lines (163 loc) · 6.53 KB
/
train_eval_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import shutil
import time
import torch
from tqdm import tqdm
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
self.history=[]
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
self.history.append(val)
def accuracy(output, target, topk=(1,)):
"""Computes the precision@k for the specified values of k"""
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(100.0 / batch_size))
return res
def train(train_loader, model, criterion, optimizer, epoch):
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
# switch to train mode
model.train()
end = time.time()
reverseChannels = False
with tqdm(total=len(train_loader)) as pbar:
for i, (input, target) in enumerate(train_loader):
# measure data loading time
data_time.update(time.time() - end)
input = input.cuda()
target = target.cuda()
input_var = torch.autograd.Variable(input)
target_var = torch.autograd.Variable(target)
# compute output
output = model(input_var)
loss = criterion(output, target_var)
# measure accuracy and record loss
prec1, prec5 = accuracy(output.data, target, topk=(1, 5))
# losses.update(loss.data[0], input.size(0))
losses.update(loss.data.item(), input.size(0))
top1.update(prec1.item(), input.size(0))
top5.update(prec5.item(), input.size(0))
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
pbar.update(1)
pbar.set_description('Epoch: %d | Loss: %.3f | Acc: %.3f%%'% (epoch, losses.avg, top1.avg))
return losses.avg, top1.avg, top5.avg
def validate(val_loader, model, criterion=None , num_batches=None, verbose=True):
batch_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
# switch to evaluate mode
model.eval()
end = time.time()
with tqdm(total=len(val_loader)) as pbar:
for i, (input, target) in enumerate(val_loader):
if num_batches:
if i>num_batches:
break
input = input.cuda()
target = target.cuda()
with torch.no_grad():
input_var = torch.autograd.Variable(input)
target_var = torch.autograd.Variable(target)
# compute output
output = model(input_var)
# measure accuracy and record loss
if criterion is not None:
loss = criterion(output, target_var)
losses.update(loss.data.item(), input.size(0))
else:
losses.update(0.0, input.size(0))
prec1, prec5 = accuracy(output.data, target, topk=(1, 5))
top1.update(prec1.item(), input.size(0))
top5.update(prec5.item(), input.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
pbar.update(1)
if verbose:
print(' * Prec@1 {top1.avg:.3f} Prec@5 {top5.avg:.3f}'
.format(top1=top1, top5=top5))
return top1.avg, top5.avg, losses.avg
def test(loader, net, criterion, verbose=False):
device = 'cuda' if torch.cuda.is_available() else 'cpu'
net.eval()
correct = 0
total = 0
losses = AverageMeter()
with torch.no_grad():
for batch_idx, (inputs, targets) in enumerate(loader):
inputs, targets = inputs.to(device), targets.to(device)
outputs = net(inputs)
loss = criterion(outputs, targets)
losses.update(loss.data.item(), inputs.size(0))
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
acc = 100.*correct/total
if verbose:
print(' * Prec@1 {:.2f}'.format(acc))
return acc, losses.avg
# def adjust_learning_rate(local_models, epoch, step, num_steps_per_epoch,
# warmup_lr_epochs=0, schedule_lr_per_epoch=False):
# if epoch < warmup_lr_epochs:
# size = len(local_models)
# epoch += step / num_steps_per_epoch
# factor = (epoch * (size - 1) / warmup_lr_epochs + 1) / size
# for lm in local_models:
# for param_group, base_lr in zip(lm.scheduler.optimizer.param_groups,
# lm.scheduler.base_lrs):
# param_group['lr'] = base_lr * factor
# elif schedule_lr_per_epoch and (step > 0 or epoch == 0):
# return
# elif epoch == warmup_lr_epochs and step == 0:
# for lm in local_models:
# for param_group, base_lr in zip(lm.scheduler.optimizer.param_groups,
# lm.scheduler.base_lrs):
# param_group['lr'] = base_lr
# return
# else:
# for lm in local_models:
# lm.scheduler.step()
def adjust_learning_rate(scheduler, epoch, step, num_steps_per_epoch,
warmup_lr_epochs=0, schedule_lr_per_epoch=False, size=1):
if epoch < warmup_lr_epochs:
epoch += step / num_steps_per_epoch
factor = (epoch * (size - 1) / warmup_lr_epochs + 1) / size
for param_group, base_lr in zip(scheduler.optimizer.param_groups,
scheduler.base_lrs):
param_group['lr'] = base_lr * factor
elif schedule_lr_per_epoch and (step > 0 or epoch == 0):
return
elif epoch == warmup_lr_epochs and step == 0:
for param_group, base_lr in zip(scheduler.optimizer.param_groups,
scheduler.base_lrs):
param_group['lr'] = base_lr
return
else:
scheduler.step()