-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
164 lines (135 loc) · 5.91 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# Python version: 3.6
import copy
import torch
from torchvision import datasets, transforms
from PIL import Image
import pdb
from sampling import mnist_iid, mnist_noniid, mnist_noniid_unequal
from sampling import cifar_iid, cifar_noniid
from torchvision.transforms import ToTensor
class CIFAR10_idx(datasets.CIFAR10):
def __init__(self, root: str, train: bool = True, transform = None, target_transform = None, download: bool = False,):
super(CIFAR10_idx, self).__init__(root, train=train, transform=transform,
target_transform=target_transform, download=download)
def __getitem__(self, index: int):
img, target = self.data[index], self.targets[index]
# doing this so that it is consistent with all other datasets
# to return a PIL Image
img = Image.fromarray(img)
if self.transform is not None:
img = self.transform(img)
if self.target_transform is not None:
target = self.target_transform(target)
return img, target, index
class MINIST_idx(datasets.MNIST):
def __init__(self, root: str, train: bool = True, transform = None, target_transform = None, download: bool = False,):
super(MINIST_idx, self).__init__(root, train=train, transform=transform,
target_transform=target_transform, download=download)
def __getitem__(self, index: int):
img, target = self.data[index], self.targets[index]
# doing this so that it is consistent with all other datasets
# to return a PIL Image
# pdb.set_trace()
img = img.numpy()
# img = Image.fromarray(img)
if self.transform is not None:
img = self.transform(img)
if self.target_transform is not None:
target = self.target_transform(target)
return img, target, index
def get_dataset(args):
""" Returns train and test datasets and a user group which is a dict where
the keys are the user index and the values are the corresponding data for
each of those users.
"""
# pdb.set_trace()
if args.dataset == 'cifar10':
data_dir = '../data/cifar/'
train_transforms = transforms.Compose(
[
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(mean=[0.4914, 0.4822, 0.4465], std=[0.2023, 0.1994, 0.2010])
]
)
test_transforms = transforms.Compose(
[
transforms.Resize(32),
transforms.ToTensor(),
transforms.Normalize(mean=[0.4914, 0.4822, 0.4465], std=[0.2023, 0.1994, 0.2010]),
]
)
train_dataset = CIFAR10_idx(data_dir, train=True, download=True,
transform=train_transforms)
test_dataset = datasets.CIFAR10(data_dir, train=False, download=True,
transform=test_transforms)
# sample training data amongst users
if args.iid:
# Sample IID user data from Mnist
user_groups = cifar_iid(train_dataset, args.num_users)
else:
# Sample Non-IID user data from Mnist
if args.unequal:
# Chose uneuqal splits for every user
raise NotImplementedError()
else:
# Chose euqal splits for every user
user_groups = cifar_noniid(train_dataset, args.num_users)
elif args.dataset == 'mnist' or 'fmnist':
if args.dataset == 'mnist':
data_dir = '../data/mnist/'
else:
data_dir = '../data/fmnist/'
# apply_transform = transforms.Compose([
# transforms.ToTensor(),
# transforms.Normalize((0.1307,), (0.3081,))])
# train_dataset = MINIST_idx(data_dir, train=True, download=True,
# transform=apply_transform)
train_dataset = MINIST_idx(data_dir, train=True, download=True,
transform=ToTensor())
# train_dataset = datasets.MNIST(data_dir, train=True, download=True,
# transform=apply_transform)
# test_dataset = datasets.MNIST(data_dir, train=False, download=True,
# transform=apply_transform)
test_dataset = datasets.MNIST(data_dir, train=False, download=True,
transform=ToTensor())
# sample training data amongst users
if args.iid:
# Sample IID user data from Mnist
user_groups = mnist_iid(train_dataset, args.num_users)
else:
# Sample Non-IID user data from Mnist
if args.unequal:
# Chose uneuqal splits for every user
user_groups = mnist_noniid_unequal(train_dataset, args.num_users)
else:
# Chose euqal splits for every user
user_groups = mnist_noniid(train_dataset, args.num_users)
return train_dataset, test_dataset, user_groups
def average_weights(w):
"""
Returns the average of the weights.
"""
w_avg = copy.deepcopy(w[0])
for key in w_avg.keys():
for i in range(1, len(w)):
w_avg[key] += w[i][key]
w_avg[key] = torch.div(w_avg[key], len(w))
return w_avg
def exp_details(args):
print('\nExperimental details:')
print(f' Model : {args.model}')
print(f' Optimizer : {args.optimizer}')
print(f' Learning : {args.lr}')
print(f' Global Rounds : {args.epochs}\n')
print(' Federated parameters:')
if args.iid:
print(' IID')
else:
print(' Non-IID')
print(f' Fraction of users : {args.frac}')
print(f' Global Batch size : {args.batch_size}')
return