-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcifar10_ResNet50_clean_pgd_withoutdefense.py
331 lines (260 loc) · 12.6 KB
/
cifar10_ResNet50_clean_pgd_withoutdefense.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
"""
This tutorial shows how to generate adversarial examples using PGD with TensorFlow.
Revised from cleverhans
Xintao Ding
"""
# pylint: disable=missing-docstring
import numpy as np
import tensorflow as tf
import slim.nets.resnet_v1 as resnet_v1
import tensorflow.contrib.slim as slim
from cifar10_create_tf_record import get_example_nums,read_records,get_batch_images
from cleverhans import utils_tf
from cleverhans.utils_tf import clip_eta, random_lp_vector
from cleverhans.compat import reduce_max, reduce_sum, softmax_cross_entropy_with_logits
from sklearn.metrics import roc_curve, roc_auc_score
#from tensorflow.python import pywrap_tensorflow
import matplotlib.pyplot as plt
batch_size = 20 #
labels_nums = 10 # the number of labels
resize_height = 32 # Cifar10 size
resize_width = 32 #
net_height = 128#the input size for resnet50
net_width = 128#
depths = 3
input_images = tf.placeholder(dtype=tf.float32, shape=[None, net_height, net_width, depths], name='input')
input_labels = tf.placeholder(dtype=tf.int32, shape=[None, labels_nums], name='label')
y = tf.placeholder(dtype=tf.int32, shape=[None, labels_nums])
is_training = tf.placeholder(tf.bool, name='is_training')
#test data
val_record_file='./cifar10_extensions/cifar10_test.tfrecords_seg'
val_nums=get_example_nums(val_record_file)
print('val nums:%d'%(val_nums))
val_images, val_labels = read_records([val_record_file], resize_height, resize_width, type='normalization')
val_images_batch, val_labels_batch = get_batch_images(val_images, val_labels,
batch_size=batch_size, labels_nums=labels_nums,
one_hot=True, shuffle=False,num_threads=1)
val_images_batch = tf.image.resize_images(val_images_batch,size=(net_height, net_width))
val_images_batch = tf.rint(val_images_batch*256.)*(1. / 256)#normalized to 256 levels
# Define the model:
with slim.arg_scope(resnet_v1.resnet_arg_scope()):
out, end_points = resnet_v1.resnet_v1_50(inputs=input_images, num_classes=labels_nums, is_training=is_training)
probs = tf.nn.softmax(out)
tf.losses.softmax_cross_entropy(onehot_labels=input_labels, logits=out)#
loss = tf.losses.get_total_loss(add_regularization_losses=True)#
accuracy = tf.equal(tf.argmax(out, 1), tf.argmax(input_labels, 1))
def fgm(x,
logits,
y = None,
eps=0.3,
ord=np.inf,
loss_fn=softmax_cross_entropy_with_logits,
clip_min=None,
clip_max=None,
clip_grad=False,
targeted=False,
sanity_checks=True):
asserts = []
print("OOOOOOOOOOOOOOOOOOOOOOOO:{}".format(ord))
# If a data range was specified, check that the input was in that range
if clip_min is not None:
asserts.append(utils_tf.assert_greater_equal(x, tf.cast(clip_min, x.dtype)))
if clip_max is not None:
asserts.append(utils_tf.assert_less_equal(x, tf.cast(clip_max, x.dtype)))
# PGD has produced y and delivers it to FGSM
y = y / reduce_sum(y, 1, keepdims=True)
print("yyyyyyyyyyyyyyyyyyyyyy={}".format(y))
loss = loss_fn(labels=y, logits=logits)
# Compute loss
if targeted:
loss = -loss
# Define gradient of loss wrt input
grad, = tf.gradients(loss, x)
if clip_grad:
grad = utils_tf.zero_out_clipped_grads(grad, x, clip_min, clip_max)
optimal_perturbation = optimize_linear(grad, eps, ord)
# Add perturbation to original example to obtain adversarial example
adv_x = x + optimal_perturbation
print("adv_x=============================:{}".format((adv_x)))
# assert 1==2
# If clipping is needed, reset all values outside of [clip_min, clip_max]
if (clip_min is not None) or (clip_max is not None):
# We don't currently support one-sided clipping
assert clip_min is not None and clip_max is not None
adv_x = utils_tf.clip_by_value(adv_x, clip_min, clip_max)
print("optimal_perturbation:{},adv_x:{}, clip_min:{}, clip_max:{}".format(optimal_perturbation,adv_x, clip_min, clip_max))
if sanity_checks:
with tf.control_dependencies(asserts):
adv_x = tf.identity(adv_x)
return adv_x, grad, loss, y, optimal_perturbation
def optimize_linear(grad, eps, ord=np.inf):
# In Python 2, the `list` call in the following line is redundant / harmless.
# In Python 3, the `list` call is needed to convert the iterator returned by `range` into a list.
red_ind = list(range(1, len(grad.get_shape())))
avoid_zero_div = 1e-12
if ord == np.inf:
# Take sign of gradient
optimal_perturbation = tf.sign(grad)
# The following line should not change the numerical results.
# It applies only because `optimal_perturbation` is the output of
# a `sign` op, which has zero derivative anyway.
# It should not be applied for the other norms, where the
# perturbation has a non-zero derivative.
optimal_perturbation = tf.stop_gradient(optimal_perturbation)
elif ord == 1:
abs_grad = tf.abs(grad)
sign = tf.sign(grad)
max_abs_grad = tf.reduce_max(abs_grad, red_ind, keepdims=True)
tied_for_max = tf.to_float(tf.equal(abs_grad, max_abs_grad))
num_ties = tf.reduce_sum(tied_for_max, red_ind, keepdims=True)
optimal_perturbation = sign * tied_for_max / num_ties
elif ord == 2:
square = tf.maximum(avoid_zero_div,
tf.reduce_sum(tf.square(grad),
reduction_indices=red_ind,
keepdims=True))
optimal_perturbation = grad / tf.sqrt(square)
else:
raise NotImplementedError("Only L-inf, L1 and L2 norms are "
"currently implemented.")
# Scale perturbation to be the solution for the norm=eps rather than
# norm=1 problem
scaled_perturbation = utils_tf.mul(eps, optimal_perturbation)
return scaled_perturbation
def generate_pgdhead(x, logits,eps=0.1,norm_ord=np.inf,clip_min=-0.5,clip_max=0.5,rand_init=1):
y=None
rand_init_eps=eps
# Save attack-specific parameters
asserts = []
# If a data range was specified, check that the input was in that range
if clip_min is not None:
asserts.append(utils_tf.assert_greater_equal(x, tf.cast(clip_min, x.dtype)))
if clip_max is not None:
asserts.append(utils_tf.assert_less_equal(x, tf.cast(clip_max, x.dtype)))
# Initialize loop variables
if rand_init:
eta = random_lp_vector(tf.shape(x), norm_ord, tf.cast(rand_init_eps, x.dtype), dtype=x.dtype)
else:
eta = tf.zeros(tf.shape(x))
# Clip eta
eta = clip_eta(eta, norm_ord, eps)
adv_x = x + eta
if clip_min is not None or clip_max is not None:
adv_x = utils_tf.clip_by_value(adv_x, clip_min, clip_max)
if y is not None:
y = y
else:
# prepare y for FGSM
model_preds = tf.nn.softmax(logits=logits)
preds_max = tf.reduce_max(model_preds, 1, keepdims=True)
y = tf.to_float(tf.equal(model_preds, preds_max))
y = tf.stop_gradient(y)
del model_preds
return adv_x, y
saver = tf.train.Saver()
val_max_steps = int(val_nums / batch_size)
eps=0.03#0.3,
norm_ord=np.inf
clip_min=0.
clip_max=1.0
rand_init=1
eps_iter=0.0075#0.01#0.05,
nb_iter=10
#y=None
#clip_grad=False
#sanity_checks=True
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
sess.run(tf.local_variables_initializer())
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(sess=sess, coord=coord)
#########################################Added by Ding
print("aaaaaaaaaaaaaaaaa=+++++++++++++++++++++++++++++")
saver.restore(sess,'models/cifar10/resnet50_clean_models_987000_0.9069.ckpt')
print("aaaaaaaaaaaaaaaaa=************************************")
# Initialize the Projected Gradient Descent Method (PGDM) attack object and
# graph
# pgd = ProjectedGradientDescent(model, sess=sess)
adv_x_head, attack_label = generate_pgdhead(input_images, out,
eps=eps,norm_ord=norm_ord,clip_min=clip_min,
clip_max=clip_max,rand_init=rand_init)
adv_x, grad_x, loss_x, _, _ = fgm(input_images,logits=out,y=y, eps = eps_iter,
clip_min=clip_min,clip_max=clip_max)
x_test = np.zeros((val_nums,net_height,net_width,depths),dtype=np.float32)
y_test = np.zeros((val_nums,labels_nums),dtype=np.float32)
logits = np.zeros((val_nums,labels_nums),dtype=np.float32)
logits_adv = np.zeros((val_nums,labels_nums),dtype=np.float32)
adv = np.zeros((val_nums,net_height,net_width,depths),dtype=np.float32)
adv_prob_legit = np.zeros((val_nums,labels_nums),dtype=np.float32)
test_prob_legit = np.zeros((val_nums,labels_nums),dtype=np.float32)
for i in range(val_max_steps):
if i%10 == 0:
print("i:{}".format(i))
val_x_bat, val_y_bat = sess.run([val_images_batch, val_labels_batch])
xxx=np.zeros((net_height,net_width,depths),dtype=np.float32)
# xxx=val_x_bat[0,:,:,:]*255
# xxx=xxx.astype(np.uint8)
# plt.imshow(xxx)
feed_dict = {input_images: val_x_bat, is_training: False}
logits_bat = sess.run(out, feed_dict=feed_dict)
feed_dict = {input_images: val_x_bat, is_training: False}
adv_bat, label_host_bat = sess.run([adv_x_head, attack_label], feed_dict=feed_dict)
for k in range(nb_iter):
feed_dict = {input_images: adv_bat, y:label_host_bat, is_training: False}
advtemp_bat = sess.run(adv_x, feed_dict=feed_dict)
eta = advtemp_bat - val_x_bat
eta = np.clip(eta, -eps, eps)
adv_bat = val_x_bat + eta
# Redo the clipping.
# FGM already did it, but subtracting and re-adding eta can add some
# small numerical error.
if clip_min is not None or clip_max is not None:
adv_bat = np.clip(adv_bat, clip_min, clip_max)
feed_dict = {input_images: adv_bat, is_training: False}
# xxx=adv_bat[0,:,:,:]*255
# xxx=xxx.astype(np.uint8)
# plt.imshow(xxx)
logits_adv_bat = sess.run(out, feed_dict=feed_dict)
x_test[i*batch_size:(i+1)*batch_size,:,:,:] = val_x_bat
y_test[i*batch_size:(i+1)*batch_size,:] = val_y_bat
adv[i*batch_size:(i+1)*batch_size,:,:,:] = adv_bat#Ranged in [0, 1]
logits[i*batch_size:(i+1)*batch_size,:] = logits_bat
logits_adv[i*batch_size:(i+1)*batch_size,:] = logits_adv_bat
test_prob_legit[i*batch_size:(i+1)*batch_size,:] = sess.run(probs,feed_dict = {input_images: val_x_bat, is_training: False})
adv_prob_legit[i*batch_size:(i+1)*batch_size,:] = sess.run(probs,feed_dict = {input_images: adv_bat, is_training: False})
#########################################
coord.request_stop()
coord.join(threads)
# np.save("cifar10_ResNet50_augmodel_pgd_10000adv",adv)#save advs
test_end = val_nums
base_range=4
n_pert = base_range**depths
ext_bat = n_pert+1
percent_perturbed = np.mean(np.sum((adv - x_test)**2, axis=(1, 2, 3))**.5)
# percent_perturbed_trans = np.mean(np.sum((trans_adv - x_test)**2, axis=(1, 2, 3))**.5)
#for untargeted attack, suc_att_exam[i] is true means a successful classified examples
#for targeted attack, suc_att_exam[i] is true means a successful attack, it counts succeful attacked examples
dsae=0
kk=0
adv_suc_att_exam = np.equal(np.argmax(logits_adv,axis=1),np.argmax(y_test,axis=1))
suc_att_exam = np.equal(np.argmax(logits,axis=1),np.argmax(y_test,axis=1))
for i in range(len(adv_suc_att_exam)):
if adv_suc_att_exam[i]==0 and suc_att_exam[i]>0:#adversarial is misclassified but its corresponding binign example is correctly detected
dsae+=np.sum((adv[i,:,:,:] - x_test[i,:,:,:])**2)**.5
kk += 1
dsae=dsae/kk
print("For untargeted attack, the number of misclassified examples (successful attack), sum(adv_suc_att_exam==0):{}, dsae:{}".format(sum(adv_suc_att_exam==0),dsae))
print('Avg. L_2 norm of perturbations {}'.format(percent_perturbed))
print('The number of successful attack:{}, Avg. L_2 norm of perturbations on successful attack / dsae:{}'.format(kk,dsae))
logits = np.argmax(logits,axis=1)
logits_adv = np.argmax(logits_adv,axis=1)
y_test_argmax = np.argmax(y_test,axis=1)
acc = np.sum(np.equal(logits,y_test_argmax))/len(y_test_argmax)
acc_adv = np.sum(np.equal(logits_adv,y_test_argmax))/len(y_test_argmax)
print('Test accuracy on legitimate test examples: %0.4f' % (acc))
print('Test accuracy on adversarial test examples: %0.4f' % (acc_adv))
auc_score_test = roc_auc_score(y_test, test_prob_legit)
auc_score_adv = roc_auc_score(y_test, adv_prob_legit)
print("auc_score_test:{},auc_score_adv:{}".format(auc_score_test, auc_score_adv))
sess.close()
#########################################