-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathimgnet_incepv3_Cons-Def_pgd_defense.py
573 lines (477 loc) · 27.4 KB
/
imgnet_incepv3_Cons-Def_pgd_defense.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
"""
This tutorial shows how to implement Cons-Def against FGSM white-box attacks.
Xintao Ding
School of Computer and Information, Anhui Normal University
"""
# pylint: disable=missing-docstring
import numpy as np
import tensorflow as tf
import slim.nets.inception_v3 as inception_v3
import tensorflow.contrib.slim as slim
from create_tf_record import get_example_nums,read_records,get_batch_images
from cleverhans import utils_tf
from cleverhans.utils_tf import clip_eta, random_lp_vector
from cleverhans.compat import reduce_max, reduce_sum, softmax_cross_entropy_with_logits
from cleverhans.data_exten_mulpro import data_exten#Added by Ding
from sklearn.metrics import roc_curve, roc_auc_score#Added by Ding
import multiprocessing
import matplotlib.pyplot as plt
#from imgnet_incepv3_test_dataext_fgsm_defense import fgm
#from tensorflow.python import pywrap_tensorflow
batch_size = 20 #
labels_nums = 10 # the number of labels
resize_height = 299 # imagenet size
resize_width = 299
net_height = resize_height
net_width = resize_width
depths = 3
input_images = tf.placeholder(dtype=tf.float32, shape=[None, resize_height, resize_width, depths], name='input')
input_labels = tf.placeholder(dtype=tf.int32, shape=[None, labels_nums], name='label')
y = tf.placeholder(dtype=tf.int32, shape=[None, labels_nums])
#for tensorflow1.2, keep_prob cannot be defined as placeholder, it must be a scalar and it needn't be fed to session
keep_prob = 0.5#tf.placeholder(tf.float32,name='keep_prob')
is_training = tf.placeholder(tf.bool, name='is_training')
#test data
val_record_file='data/caffe_ilsvrc12_record/val299.tfrecords'
val_nums=get_example_nums(val_record_file)
print('val nums:%d'%(val_nums))
# val_images, val_labels = read_records([val_record_file], resize_height, resize_width, type='normalization')
val_images, val_labels = read_records([val_record_file], resize_height, resize_width, type='centralization')
val_images_batch, val_labels_batch = get_batch_images(val_images, val_labels,
batch_size=batch_size, labels_nums=labels_nums,
one_hot=True, shuffle=False,num_threads=1)
#val_images_batch = tf.image.resize_images(val_images_batch,size=(resize_height, resize_width))
#val_images_batch = tf.rint(val_images_batch*255.)*(1. / 255)
# Define the model:
with slim.arg_scope(inception_v3.inception_v3_arg_scope()):
out, end_points = inception_v3.inception_v3(inputs=input_images, num_classes=labels_nums, dropout_keep_prob=keep_prob, is_training=is_training)
# out, end_points = inception_v3.inception_v3(inputs=input_images, num_classes=labels_nums, is_training=is_training)
probs = tf.nn.softmax(out)
tf.losses.softmax_cross_entropy(onehot_labels=input_labels, logits=out)
loss = tf.losses.get_total_loss(add_regularization_losses=True)
accuracy = tf.equal(tf.argmax(out, 1), tf.argmax(input_labels, 1))
def fgm(x,
logits,
y = None,
eps=0.3,
ord=np.inf,
loss_fn=softmax_cross_entropy_with_logits,
clip_min=None,
clip_max=None,
clip_grad=False,
targeted=False,
sanity_checks=True):
asserts = []
print("OOOOOOOOOOOOOOOOOOOOOOOO:{}".format(ord))
# If a data range was specified, check that the input was in that range
if clip_min is not None:
asserts.append(utils_tf.assert_greater_equal(x, tf.cast(clip_min, x.dtype)))
if clip_max is not None:
asserts.append(utils_tf.assert_less_equal(x, tf.cast(clip_max, x.dtype)))
# Make sure the caller has not passed probs by accident
# if y is None:
# Using model predictions as ground truth to avoid label leaking
# preds_max = reduce_max(logits, 1, keepdims=True)
# y = tf.to_float(tf.equal(logits, preds_max))
# y = tf.stop_gradient(y)
# else:
# ty = tf.Variable(np.zeros((batch_size, labels_nums)), dtype=tf.float32)
# ty.assign(y)
y = y / reduce_sum(y, 1, keepdims=True)
print("yyyyyyyyyyyyyyyyyyyyyy={}".format(y))
loss = loss_fn(labels=y, logits=logits)
# Compute loss
if targeted:
loss = -loss
# Define gradient of loss wrt input
grad, = tf.gradients(loss, x)
if clip_grad:
grad = utils_tf.zero_out_clipped_grads(grad, x, clip_min, clip_max)
optimal_perturbation = optimize_linear(grad, eps, ord)
# Add perturbation to original example to obtain adversarial example
adv_x = x + optimal_perturbation
print("adv_x=============================:{}".format((adv_x)))
# assert 1==2
# If clipping is needed, reset all values outside of [clip_min, clip_max]
if (clip_min is not None) or (clip_max is not None):
# We don't currently support one-sided clipping
assert clip_min is not None and clip_max is not None
adv_x = utils_tf.clip_by_value(adv_x, clip_min, clip_max)
print("optimal_perturbation:{},adv_x:{}, clip_min:{}, clip_max:{}".format(optimal_perturbation,adv_x, clip_min, clip_max))
if sanity_checks:
with tf.control_dependencies(asserts):
adv_x = tf.identity(adv_x)
return adv_x, grad, loss, y, optimal_perturbation
def optimize_linear(grad, eps, ord=np.inf):
# In Python 2, the `list` call in the following line is redundant / harmless.
# In Python 3, the `list` call is needed to convert the iterator returned by `range` into a list.
red_ind = list(range(1, len(grad.get_shape())))
avoid_zero_div = 1e-12
if ord == np.inf:
# Take sign of gradient
optimal_perturbation = tf.sign(grad)
# The following line should not change the numerical results.
# It applies only because `optimal_perturbation` is the output of
# a `sign` op, which has zero derivative anyway.
# It should not be applied for the other norms, where the
# perturbation has a non-zero derivative.
optimal_perturbation = tf.stop_gradient(optimal_perturbation)
elif ord == 1:
abs_grad = tf.abs(grad)
sign = tf.sign(grad)
max_abs_grad = tf.reduce_max(abs_grad, red_ind, keepdims=True)
tied_for_max = tf.to_float(tf.equal(abs_grad, max_abs_grad))
num_ties = tf.reduce_sum(tied_for_max, red_ind, keepdims=True)
optimal_perturbation = sign * tied_for_max / num_ties
elif ord == 2:
square = tf.maximum(avoid_zero_div,
tf.reduce_sum(tf.square(grad),
reduction_indices=red_ind,
keepdims=True))
optimal_perturbation = grad / tf.sqrt(square)
else:
raise NotImplementedError("Only L-inf, L1 and L2 norms are "
"currently implemented.")
# Scale perturbation to be the solution for the norm=eps rather than
# norm=1 problem
scaled_perturbation = utils_tf.mul(eps, optimal_perturbation)
return scaled_perturbation
def generate_pgdhead(x, logits,eps=0.1,norm_ord=np.inf,clip_min=-0.5,clip_max=0.5,rand_init=1):
y=None
rand_init_eps=eps
# Save attack-specific parameters
asserts = []
# If a data range was specified, check that the input was in that range
if clip_min is not None:
asserts.append(utils_tf.assert_greater_equal(x, tf.cast(clip_min, x.dtype)))
if clip_max is not None:
asserts.append(utils_tf.assert_less_equal(x, tf.cast(clip_max, x.dtype)))
# Initialize loop variables
if rand_init:
eta = random_lp_vector(tf.shape(x), norm_ord, tf.cast(rand_init_eps, x.dtype), dtype=x.dtype)
else:
eta = tf.zeros(tf.shape(x))
# Clip eta
eta = clip_eta(eta, norm_ord, eps)
adv_x = x + eta
if clip_min is not None or clip_max is not None:
adv_x = utils_tf.clip_by_value(adv_x, clip_min, clip_max)
if y is not None:
y = y
else:
# model_preds = model.get_probs(x)
model_preds = tf.nn.softmax(logits=logits)
preds_max = tf.reduce_max(model_preds, 1, keepdims=True)
y = tf.to_float(tf.equal(model_preds, preds_max))
y = tf.stop_gradient(y)
del model_preds
return adv_x, y
saver = tf.train.Saver()
val_max_steps = int(val_nums / batch_size)
eps=0.03#0.3,
norm_ord=np.inf
clip_min=-0.50
clip_max=0.50
rand_init=1
eps_iter=0.0075#0.01#0.05,
nb_iter=10
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
sess.run(tf.local_variables_initializer())
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(sess=sess, coord=coord)
#########################################Added by Ding
print("aaaaaaaaaaaaaaaaa=+++++++++++++++++++++++++++++")
saver.restore(sess,'models/caffe_ilsvrc12/inceptv3_best_models_682600_0.7458.ckpt')
print("aaaaaaaaaaaaaaaaa=************************************")
# Initialize the Projected Gradient Descent Method (PGDM) attack object and
# graph
#adv=np.load("imagenet_inceptv3_augmodel_pgd_10000adv.npy")#load advs
adv_x_head, attack_label = generate_pgdhead(input_images, out,
eps=eps,norm_ord=norm_ord,clip_min=clip_min,
clip_max=clip_max,rand_init=rand_init)
adv_x, grad_x, loss_x, _, _ = fgm(input_images,logits=out,y=y, eps = eps_iter,
clip_min=clip_min,clip_max=clip_max)
x_test = np.zeros((val_nums,resize_height,resize_width,depths),dtype=np.float32)
y_test = np.zeros((val_nums,labels_nums),dtype=np.float32)
logits = np.zeros((val_nums,labels_nums),dtype=np.float32)
logits_adv = np.zeros((val_nums,labels_nums),dtype=np.float32)
adv = np.zeros((val_nums,resize_height,resize_width,depths),dtype=np.float32)
for i in range(val_max_steps):
if i%10 == 0:
print("i:{}".format(i))
val_x_bat, val_y_bat = sess.run([val_images_batch, val_labels_batch])
feed_dict = {input_images: val_x_bat, is_training: False}
logits_bat = sess.run(out, feed_dict=feed_dict)
feed_dict = {input_images: val_x_bat, is_training: False}
adv_bat, label_host_bat = sess.run([adv_x_head, attack_label], feed_dict=feed_dict)
for k in range(nb_iter):
feed_dict = {input_images: adv_bat, y:label_host_bat, is_training: False}
advtemp_bat = sess.run(adv_x, feed_dict=feed_dict)
eta = advtemp_bat - val_x_bat
eta = np.clip(eta, -eps, eps)
adv_bat = val_x_bat + eta
# Redo the clipping.
# FGM already did it, but subtracting and re-adding eta can add some
# small numerical error.
if clip_min is not None or clip_max is not None:
adv_bat = np.clip(adv_bat, clip_min, clip_max)
feed_dict = {input_images: adv_bat, is_training: False}
logits_adv_bat = sess.run(out, feed_dict=feed_dict)
x_test[i*batch_size:(i+1)*batch_size,:,:,:] = val_x_bat
y_test[i*batch_size:(i+1)*batch_size,:] = val_y_bat
adv[i*batch_size:(i+1)*batch_size,:,:,:] = adv_bat#Ranged in [0, 1]
logits[i*batch_size:(i+1)*batch_size,:] = logits_bat
logits_adv[i*batch_size:(i+1)*batch_size,:] = logits_adv_bat
#########################################
coord.request_stop()
coord.join(threads)
# np.save("imagenet_inceptv3_augmodel_pgd_10000adv",adv)#save advs
percent_perturbed = np.mean(np.sum((adv - x_test)**2, axis=(1, 2, 3))**.5)
#for untargeted attack, suc_att_exam[i] is true means a successful classified examples
#for targeted attack, suc_att_exam[i] is true means a successful attack, it counts succeful attacked examples
dsae=0
kk=0
adv_suc_att_exam = np.equal(np.argmax(logits_adv,axis=1),np.argmax(y_test,axis=1))
suc_att_exam = np.equal(np.argmax(logits,axis=1),np.argmax(y_test,axis=1))
for i in range(len(adv_suc_att_exam)):
if adv_suc_att_exam[i]==0 and suc_att_exam[i]>0:#adversarial is misclassified but its corresponding binign example is correctly detected
dsae+=np.sum((adv[i,:,:,:] - x_test[i,:,:,:])**2)**.5
# dsae+=np.sum((trans_adv[i,:,:,:] - x_test[i,:,:,:])**2)**.5
kk += 1
dsae=dsae/kk
print("For untargeted attack, the number of misclassified examples (successful attack), sum(adv_suc_att_exam==0):{}, dsae:{}".format(sum(adv_suc_att_exam==0),dsae))
print('Avg. L_2 norm of perturbations {}'.format(percent_perturbed))
print('The number of successful attack:{}, Avg. L_2 norm of perturbations on successful attack / dsae:{}'.format(kk,dsae))
pad_size = 30
left_cols=np.arange(pad_size)
left_cols=left_cols[::-1]
right_cols=np.arange(net_height-pad_size,net_height)
right_cols=right_cols[::-1]
top_rows=np.arange(pad_size,pad_size*2)
top_rows=top_rows[::-1]
foot_rows=np.arange(net_height,net_height+pad_size)
foot_rows=foot_rows[::-1]
temp_test = np.zeros((net_height+2*pad_size,net_width+2*pad_size,3))
temp_adv = np.zeros((net_height+2*pad_size,net_width+2*pad_size,3))
for i in range(len(adv)):
tf_image = adv[i,:,:,:]
tf_image = np.round(tf_image*256)/256.0
temp_adv[pad_size:net_height+pad_size,pad_size:net_width+pad_size,:] = tf_image
temp_adv[pad_size:net_height+pad_size, :pad_size, :]=tf_image[:, left_cols, :]#reflect left
temp_adv[pad_size:net_height+pad_size, net_height+pad_size:, :]=tf_image[:, right_cols, :]#reflect right
temp_adv[:pad_size, :, :]=temp_adv[top_rows, :, :]
temp_adv[net_height+pad_size:, :, :]=temp_adv[foot_rows, :, :]
tf_image = temp_adv
test_image = x_test[i,:,:,:]
temp_test[pad_size:net_height+pad_size,pad_size:net_width+pad_size,:] = test_image
temp_test[pad_size:net_height+pad_size, :pad_size, :]=test_image[:, left_cols, :]#reflect left
temp_test[pad_size:net_height+pad_size, net_height+pad_size:, :]=test_image[:, right_cols, :]#reflect right
temp_test[:pad_size, :, :]=temp_test[top_rows, :, :]
temp_test[net_height+pad_size:, :, :]=temp_test[foot_rows, :, :]
test_image = temp_test
lu1 = np.random.randint(0,pad_size*2)
lu2 = np.random.randint(0,pad_size*2)
adv[i,:,:,:] = tf_image[lu1:lu1+net_height,lu2:lu2+net_width,:]
x_test[i,:,:,:] = test_image[lu1:lu1+net_height,lu2:lu2+net_width,:]
batch_size = 5
base_range=4
n_pert = base_range**depths
ext_bat = n_pert+1
logits_ext = np.zeros((val_nums*n_pert,labels_nums),dtype=np.float32)
logits_adv_ext = np.zeros((val_nums*n_pert,labels_nums),dtype=np.float32)
test_prob_pertpart=np.zeros((val_nums*n_pert,labels_nums),dtype=np.float32)
adv_prob_pertpart=np.zeros((val_nums*n_pert,labels_nums),dtype=np.float32)
y_test_pertpart = np.zeros((val_nums*n_pert,labels_nums),dtype=np.float32)
y_adv_pertpart = np.zeros((val_nums*n_pert,labels_nums),dtype=np.float32)
x_adv_pertpart = np.zeros((batch_size*n_pert*2,resize_height,resize_width,depths),dtype=np.float32)
x_test_pertpart = np.zeros((batch_size*n_pert*2,resize_height,resize_width,depths),dtype=np.float32)
val_max_steps = int(len(adv) / batch_size/2)
adv_prob_legit = np.zeros((val_nums,labels_nums),dtype=np.float32)
test_prob_legit = np.zeros((val_nums,labels_nums),dtype=np.float32)
# xxx=(x_adv_pertpart[60,:,:,:]+0.5)*255
# xxx=xxx.astype(np.uint8)
# plt.imshow(xxx)
# xxx=(x_test_pertpart[60,:,:,:]+0.5)*255
# xxx=xxx.astype(np.uint8)
# plt.imshow(xxx)
manager=multiprocessing.Manager()
for i in range(val_max_steps):
if i%10 == 0:
print("i:{}".format(i))
rt_res_adv1=manager.dict()
rt_res_adv2=manager.dict()
rt_res_test1=manager.dict()
rt_res_test2=manager.dict()
p1 = multiprocessing.Process(target=data_exten,args=(adv[i*2*batch_size:(2*i+1)*batch_size,:,:,:],
y_test[2*i*batch_size:(2*i+1)*batch_size,:],
batch_size, base_range,labels_nums,resize_height, resize_width,3,
rt_res_adv1))
p2 = multiprocessing.Process(target=data_exten,args=(adv[(2*i+1)*batch_size:2*(i+1)*batch_size,:,:,:],
y_test[(2*i+1)*batch_size:2*(i+1)*batch_size,:],
batch_size, base_range,labels_nums,resize_height, resize_width,3,
rt_res_adv2))
p3 = multiprocessing.Process(target=data_exten,args=(x_test[2*i*batch_size:(2*i+1)*batch_size,:,:,:],
y_test[2*i*batch_size:(2*i+1)*batch_size,:],
batch_size, base_range,labels_nums,resize_height, resize_width,3,
rt_res_test1))
p4 = multiprocessing.Process(target=data_exten,args=(x_test[(2*i+1)*batch_size:2*(i+1)*batch_size,:,:,:],
y_test[(2*i+1)*batch_size:2*(i+1)*batch_size,:],
batch_size, base_range,labels_nums,resize_height, resize_width,3,
rt_res_test2))
p1.start()
p2.start()
p3.start()
p4.start()
p1.join()
x_adv_extended1, y_adv_extended1 = rt_res_adv1.values()
p2.join()
x_adv_extended2, y_adv_extended2 = rt_res_adv2.values()
p3.join()
x_test_extended1, y_test_extended1 = rt_res_test1.values()
p4.join()
x_test_extended2, y_test_extended2 = rt_res_test2.values()
x_adv_pertpart[:batch_size*n_pert,:,:,:] = x_adv_extended1[:batch_size*n_pert,:,:,:]
x_adv_pertpart[batch_size*n_pert:2*batch_size*n_pert,:,:,:] = x_adv_extended2[:batch_size*n_pert,:,:,:]
y_adv_pertpart[2*i*batch_size*n_pert:(2*i+1)*batch_size*n_pert,:] = y_adv_extended1[:batch_size*n_pert,:]
y_adv_pertpart[(2*i+1)*batch_size*n_pert:2*(i+1)*batch_size*n_pert,:] = y_adv_extended2[:batch_size*n_pert,:]
x_test_pertpart[:batch_size*n_pert,:,:,:] = x_test_extended1[:batch_size*n_pert,:,:,:]
x_test_pertpart[batch_size*n_pert:2*batch_size*n_pert,:,:,:] = x_test_extended2[:batch_size*n_pert,:,:,:]
y_test_pertpart[2*i*batch_size*n_pert:(2*i+1)*batch_size*n_pert,:] = y_test_extended1[:batch_size*n_pert,:]
y_test_pertpart[(2*i+1)*batch_size*n_pert:2*(i+1)*batch_size*n_pert,:] = y_test_extended2[:batch_size*n_pert,:]
#for test accuracy on legitimate examples extended by x_test
feed_dict = {input_images: adv[2*i*batch_size:2*(i+1)*batch_size,:,:,:], is_training: False}
adv_prob_legit[2*i*batch_size:2*(i+1)*batch_size,:] = sess.run(probs,feed_dict = feed_dict)
feed_dict = {input_images: x_test[2*i*batch_size:2*(i+1)*batch_size,:,:,:], is_training: False}
test_prob_legit[2*i*batch_size:2*(i+1)*batch_size,:] = sess.run(probs,feed_dict = feed_dict)
l_bat=len(x_adv_pertpart)
jsteps = int(l_bat/batch_size)
for j in range(jsteps):
# if j%10 == 0:
# print("j:{}".format(j))
val_x_bat = x_test_pertpart[j*batch_size:(j+1)*batch_size]
val_adv_bat = x_adv_pertpart[j*batch_size:(j+1)*batch_size]
feed_dict = {input_images: val_x_bat, is_training: False}
logits_bat = sess.run(out, feed_dict=feed_dict)
feed_dict = {input_images: val_adv_bat, is_training: False}#range to [-0.5, 0.5]
logits_adv_bat = sess.run(out,feed_dict=feed_dict)
y_test_prob = sess.run(probs,feed_dict = {input_images: val_x_bat, is_training: False})
y_adv_prob = sess.run(probs,feed_dict = {input_images: val_adv_bat, is_training: False})
logits_ext[2*i*batch_size*n_pert+j*batch_size:2*i*batch_size*n_pert+(j+1)*batch_size,:] = logits_bat
logits_adv_ext[2*i*batch_size*n_pert+j*batch_size:2*i*batch_size*n_pert+(j+1)*batch_size,:] = logits_adv_bat
test_prob_pertpart[2*i*batch_size*n_pert+j*batch_size:2*i*batch_size*n_pert+(j+1)*batch_size,:] = y_test_prob
adv_prob_pertpart[2*i*batch_size*n_pert+j*batch_size:2*i*batch_size*n_pert+(j+1)*batch_size,:] = y_adv_prob
#########################################
auc_score_test = roc_auc_score(y_test, test_prob_legit)
auc_score_adv = roc_auc_score(y_test, adv_prob_legit)
print("auc_score_test:{},auc_score_adv:{}".format(auc_score_test, auc_score_adv))
auc_score_test_ext = roc_auc_score(y_test_pertpart, test_prob_pertpart)
auc_score_adv_ext = roc_auc_score(y_test_pertpart, adv_prob_pertpart)
print("auc on extended examples, auc_score_test_ext:{},auc_score_adv_ext:{}".format(auc_score_test_ext, auc_score_adv_ext))
logits = np.argmax(logits,axis=1)
logits_adv = np.argmax(logits_adv,axis=1)
y_test_argmax = np.argmax(y_test,axis=1)
acc = np.sum(np.equal(logits,y_test_argmax))/len(y_test_argmax)
acc_adv = np.sum(np.equal(logits_adv,y_test_argmax))/len(y_test_argmax)
print('Test accuracy on legitimate test examples: %0.4f' % (acc))
print('Test accuracy on adversarial test examples: %0.4f' % (acc_adv))
y_test_ext = np.argmax(y_test_pertpart,axis=1)
cur_preds = np.argmax(logits_ext,axis=1)
cur_preds_adv = np.argmax(logits_adv_ext,axis=1)
y_test_ext = np.reshape(y_test_ext,(len(y_test_pertpart)//n_pert,n_pert))
logits_ext = np.reshape(cur_preds,(len(cur_preds)//n_pert,n_pert))
logits_adv_ext = np.reshape(cur_preds_adv,(len(cur_preds_adv)//n_pert,n_pert))
acc_ext = np.sum(np.equal(logits_ext,y_test_ext))/y_test_ext.shape[0]/y_test_ext.shape[1]
acc_adv_ext = np.sum(np.equal(logits_adv_ext,y_test_ext))/y_test_ext.shape[0]/y_test_ext.shape[1]
print('Test accuracy on legitimate examples extened by x_test: %0.4f' % (acc_ext))
print('Test accuracy on extended examples of adversarials: %0.4f' % (acc_adv_ext))
test_result_stat=np.zeros((ext_bat,),dtype=np.float32)
adv_result_stat=np.zeros((ext_bat,),dtype=np.float32)
eva_thresh = np.linspace(32,64,9).astype('int32')#from 32 to 64 with a length 9
len_thresh = len(eva_thresh)
distrib_incons_preds = np.zeros((len_thresh,n_pert),dtype=np.int32)
distrib_incons_preds_adv = np.zeros((len_thresh,n_pert),dtype=np.int32)
auc_div_mat = np.zeros((len(cur_preds),n_pert+1),dtype=np.int32)
auc_div_mat_adv = np.zeros((len(cur_preds),n_pert+1),dtype=np.int32)
for i in range(len(y_test_ext)):
temp = np.sum(np.equal(logits_ext[i,:],y_test_ext[i,:]))
auc_div_mat[i,temp] = 1
test_result_stat[temp] = test_result_stat[temp]+1
a = np.unique(logits_ext[i,:])
for j in range(len_thresh):
if temp<eva_thresh[j]:
kk = []
for k in range(len(a)):
kk.extend([np.sum(logits_ext[i,:]==a[k])])
ind = np.max(np.array(kk))
distrib_incons_preds[j,ind-1] = distrib_incons_preds[j,ind-1]+1
for i in range(len(y_test_ext)):
temp = np.sum(np.equal(logits_adv_ext[i,:],y_test_ext[i,:]))
auc_div_mat_adv[i,temp] = 1
adv_result_stat[temp] = adv_result_stat[temp]+1#there is a inconsensus detection results of the 65 perturbations
a = np.unique(logits_adv_ext[i,:])
for j in range(len_thresh):
if temp<eva_thresh[j]:
kk = []
for k in range(len(a)):
kk.extend([np.sum(logits_adv_ext[i,:]==a[k])])
ind = np.max(np.array(kk))
distrib_incons_preds_adv[j,ind-1] = distrib_incons_preds_adv[j,ind-1]+1
#For a benign, thare are n_pert extension images.
#And there are n_pert classifications of the extension of a benign. They may be different or same
#The maximum occurrence of the classification labels is called consistent rank.
#e.g., n_pert=5, and the classification labels of a benign are (0, 2, 2, 1, 2), then the consistent rank of the benign is 3 that is the occurrence of the label 2.
#Furthermore, correct consistent rank is the number of the extensions of a benign that are correctly classified
#test_result_stat[i]=k
#i: correct consistent rank, i=0, 1, 2, ..., n_pert-1
#k is the count of the correct consistent rank i on test images
print("test_result_stat:{},{}".format(np.sum(test_result_stat),test_result_stat))
print("adv_result_stat:{},{}".format(np.sum(adv_result_stat),adv_result_stat))
for i in range(len_thresh):
#distrib_incons_preds3 is the count of consistent rank on the test images with correct consistent rank less than 3
print("test_result cannot be classified stat (Threshold {}):{},{}".format(eva_thresh[i],np.sum(distrib_incons_preds[i,:]),distrib_incons_preds[i,:]))
#distrib_incons_preds4 is the count of consistent rank on the test images with correct consistent rank less than 4
# print("test_result cannot be classified stat (Threshold 4):{},{}".format(np.sum(distrib_incons_preds4),distrib_incons_preds4))
#classfication: a benign with N(consistent rank)>=3 is labeled consistent rank
#The number of correctly classified benign is N(correct consistent rank)>=3
print("The number of benigns that are correctly classified (Threshold {}):{}".format(eva_thresh[i],np.sum(test_result_stat[eva_thresh[i]-len(adv_result_stat):])))
#The number of incorrectly classified benign is the cardinality of the set {example | N(consistent rank)>=3, true-label(example)~=consistent rank}
print("The number of benigns that are misclassified (Threshold {}):{}".format(eva_thresh[i],np.sum(distrib_incons_preds[i,eva_thresh[i]-len(adv_result_stat):])))
print("The number of benigns that are incorrectly detected as adv (Threshold {}):{}".format(eva_thresh[i],np.sum(distrib_incons_preds[i,:eva_thresh[i]-1])))
print("adv_result cannot be classifed stat (Threshold {}):{},{}".format(eva_thresh[i],np.sum(distrib_incons_preds_adv[i,:]),distrib_incons_preds_adv[i,:]))
print("The number of adv that are correctly classified (Threshold {}):{}".format(eva_thresh[i],np.sum(adv_result_stat[eva_thresh[i]-len(adv_result_stat):])))
print("The number of adv that are misclassified (Threshold {}):{}".format(eva_thresh[i],np.sum(distrib_incons_preds_adv[i,eva_thresh[i]-len(adv_result_stat):])))
print("The number of adv that are correctly detected as adv (Threshold {}):{}".format(eva_thresh[i],np.sum(distrib_incons_preds_adv[i,:eva_thresh[i]-1])))
####calculate auc
benign_ind_clc = np.argwhere(np.sum(auc_div_mat[:,eva_thresh[i]:],axis=1)==1)[:,0]
adv_ind_clc = np.argwhere(np.sum(auc_div_mat_adv[:,eva_thresh[i]:],axis=1)==1)[:,0]
benign_inds = benign_ind_clc*n_pert
adv_inds = adv_ind_clc*n_pert
for j in range(1,n_pert):
benign_inds = np.concatenate((benign_inds, benign_ind_clc*n_pert + j), axis=0)
adv_inds = np.concatenate((adv_inds, adv_ind_clc*n_pert + j), axis=0)
ground_labels = y_test_pertpart[tuple(benign_inds),:]
del_ind=[]
for j in range(labels_nums):
if np.sum(ground_labels[:,j])==0:
del_ind.append(j)
del_ind = np.array(del_ind)
ground_labels = np.delete(ground_labels,del_ind,axis=1)
preded_probs = test_prob_pertpart[tuple(benign_inds),:]
preded_probs = np.delete(preded_probs,del_ind,axis=1)
auc_score_clc_bn = roc_auc_score(ground_labels, preded_probs)
ground_labels_adv = y_adv_pertpart[tuple(adv_inds),:]
del_ind=[]
for j in range(labels_nums):
if np.sum(ground_labels_adv[:,j])==0:
del_ind.append(j)
del_ind = np.array(del_ind)
ground_labels_adv = np.delete(ground_labels_adv,del_ind,axis=1)
preded_probs_adv = adv_prob_pertpart[tuple(adv_inds),:]
preded_probs_adv = np.delete(preded_probs_adv,del_ind,axis=1)
auc_score_clc_adv = roc_auc_score(ground_labels_adv, preded_probs_adv)
# auc_score_clc_adv = roc_auc_score(y_adv_pertpart[tuple(adv_inds),:], y_pertpart_prob_adv[tuple(adv_inds),:])
print("(Threshold {}:) auc_score_clc_bn:{},auc_score_clc_adv:{}".format(eva_thresh[i],auc_score_clc_bn, auc_score_clc_adv))
sess.close()
#########################################