-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathimgnet_resnet50_clean_fgsm_withoutdefense.py
304 lines (242 loc) · 12.6 KB
/
imgnet_resnet50_clean_fgsm_withoutdefense.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
"""
This tutorial shows how to generate adversarial examples using DeepFool with TensorFlow.
Xintao Ding
"""
import numpy as np
import tensorflow as tf
import slim.nets.resnet_v1 as resnet_v1
import tensorflow.contrib.slim as slim
from create_tf_record import get_example_nums,read_records,get_batch_images
from cleverhans import utils_tf
from cleverhans.compat import reduce_max, reduce_sum, softmax_cross_entropy_with_logits
from sklearn.metrics import roc_curve, roc_auc_score#Added by Ding
#from tensorflow.python import pywrap_tensorflow
batch_size = 25 #
LEARNING_RATE = 0.001
CLEAN_TRAIN = True
BACKPROP_THROUGH_ATTACK = False
NB_FILTERS = 64
labels_nums = 10 # the number of labels
resize_height = 299 # ImageNet size
resize_width = 299
net_height = 224 #resnet50 size
net_width = 224
depths = 3
#test data
input_images = tf.placeholder(dtype=tf.float32, shape=[None, net_height, net_width, depths], name='input')
input_labels = tf.placeholder(dtype=tf.int32, shape=[None, labels_nums], name='label')
is_training = tf.placeholder(tf.bool, name='is_training')
# val数据,验证数据可以不需要打乱数据
val_record_file='data/caffe_ilsvrc12_record/val299.tfrecords'
val_nums=get_example_nums(val_record_file)
print('val nums:%d'%(val_nums))
# val_images, val_labels = read_records([val_record_file], resize_height, resize_width, type='normalization')
val_images, val_labels = read_records([val_record_file], resize_height, resize_width, type='centralization')
val_images_batch, val_labels_batch = get_batch_images(val_images, val_labels,
batch_size=batch_size, labels_nums=labels_nums,
one_hot=True, shuffle=False,num_threads=1)
val_images_batch = tf.image.resize_images(val_images_batch,size=(net_height, net_width))
val_images_batch = tf.rint(val_images_batch*256.)*(1. / 256)
# Define the model:
with slim.arg_scope(resnet_v1.resnet_arg_scope()):
out, end_points = resnet_v1.resnet_v1_50(inputs=input_images, num_classes=labels_nums, is_training=is_training)
# out, end_points = inception_v3.inception_v3(inputs=input_images, num_classes=labels_nums, dropout_keep_prob=keep_prob, is_training=is_training)
probs = tf.nn.softmax(out)
tf.losses.softmax_cross_entropy(onehot_labels=input_labels, logits=out)
loss = tf.losses.get_total_loss(add_regularization_losses=True)
accuracy = tf.equal(tf.argmax(out, 1), tf.argmax(input_labels, 1))
saver = tf.train.Saver()
eps = 0.03
clip_min = -0.502
clip_max = 0.502
ord = np.inf
def fgm(x,
logits,
y=None,
eps=0.3,
ord=np.inf,
loss_fn=softmax_cross_entropy_with_logits,
clip_min=None,
clip_max=None,
clip_grad=False,
targeted=False,
sanity_checks=True):
"""
TensorFlow implementation of the Fast Gradient Method.
:param x: the input placeholder
:param logits: output of model.get_logits
:param y: (optional) A placeholder for the true labels. If targeted
is true, then provide the target label. Otherwise, only provide
this parameter if you'd like to use true labels when crafting
adversarial samples. Otherwise, model predictions are used as
labels to avoid the "label leaking" effect (explained in this
paper: https://arxiv.org/abs/1611.01236). Default is None.
Labels should be one-hot-encoded.
:param eps: the epsilon (input variation parameter)
:param ord: (optional) Order of the norm (mimics NumPy).
Possible values: np.inf, 1 or 2.
:param loss_fn: Loss function that takes (labels, logits) as arguments and returns loss
:param clip_min: Minimum float value for adversarial example components
:param clip_max: Maximum float value for adversarial example components
:param clip_grad: (optional bool) Ignore gradient components
at positions where the input is already at the boundary
of the domain, and the update step will get clipped out.
:param targeted: Is the attack targeted or untargeted? Untargeted, the
default, will try to make the label incorrect. Targeted
will instead try to move in the direction of being more
like y.
:return: a tensor for the adversarial example
"""
asserts = []
print("OOOOOOOOOOOOOOOOOOOOOOOO:{}".format(ord))
# If a data range was specified, check that the input was in that range
if clip_min is not None:
asserts.append(utils_tf.assert_greater_equal(x, tf.cast(clip_min, x.dtype)))
if clip_max is not None:
asserts.append(utils_tf.assert_less_equal(x, tf.cast(clip_max, x.dtype)))
# Make sure the caller has not passed probs by accident
if y is None:
# Using model predictions as ground truth to avoid label leaking
preds_max = reduce_max(logits, 1, keepdims=True)
y = tf.to_float(tf.equal(logits, preds_max))
y = tf.stop_gradient(y)
y = y / reduce_sum(y, 1, keepdims=True)
print("yyyyyyyyyyyyyyyyyyyyyy={}".format(y))
loss = loss_fn(labels=y, logits=logits)
# Compute loss
if targeted:
loss = -loss
# Define gradient of loss wrt input
grad, = tf.gradients(loss, x)
if clip_grad:
grad = utils_tf.zero_out_clipped_grads(grad, x, clip_min, clip_max)
optimal_perturbation = optimize_linear(grad, eps, ord)
# Add perturbation to original example to obtain adversarial example
adv_x = x + optimal_perturbation
print("adv_x=============================:{}".format((adv_x)))
# assert 1==2
# If clipping is needed, reset all values outside of [clip_min, clip_max]
if (clip_min is not None) or (clip_max is not None):
# We don't currently support one-sided clipping
assert clip_min is not None and clip_max is not None
adv_x = utils_tf.clip_by_value(adv_x, clip_min, clip_max)
print("optimal_perturbation:{},adv_x:{}, clip_min:{}, clip_max:{}".format(optimal_perturbation,adv_x, clip_min, clip_max))
if sanity_checks:
with tf.control_dependencies(asserts):
adv_x = tf.identity(adv_x)
return adv_x, grad, loss, y, optimal_perturbation
def optimize_linear(grad, eps, ord=np.inf):
"""
Solves for the optimal input to a linear function under a norm constraint.
Optimal_perturbation = argmax_{eta, ||eta||_{ord} < eps} dot(eta, grad)
:param grad: tf tensor containing a batch of gradients
:param eps: float scalar specifying size of constraint region
:param ord: int specifying order of norm
:returns:
tf tensor containing optimal perturbation
"""
# In Python 2, the `list` call in the following line is redundant / harmless.
# In Python 3, the `list` call is needed to convert the iterator returned by `range` into a list.
red_ind = list(range(1, len(grad.get_shape())))
avoid_zero_div = 1e-12
if ord == np.inf:
# Take sign of gradient
optimal_perturbation = tf.sign(grad)
# The following line should not change the numerical results.
# It applies only because `optimal_perturbation` is the output of
# a `sign` op, which has zero derivative anyway.
# It should not be applied for the other norms, where the
# perturbation has a non-zero derivative.
optimal_perturbation = tf.stop_gradient(optimal_perturbation)
elif ord == 1:
abs_grad = tf.abs(grad)
sign = tf.sign(grad)
max_abs_grad = tf.reduce_max(abs_grad, red_ind, keepdims=True)
tied_for_max = tf.to_float(tf.equal(abs_grad, max_abs_grad))
num_ties = tf.reduce_sum(tied_for_max, red_ind, keepdims=True)
optimal_perturbation = sign * tied_for_max / num_ties
elif ord == 2:
square = tf.maximum(avoid_zero_div,
tf.reduce_sum(tf.square(grad),
reduction_indices=red_ind,
keepdims=True))
optimal_perturbation = grad / tf.sqrt(square)
else:
raise NotImplementedError("Only L-inf, L1 and L2 norms are "
"currently implemented.")
# Scale perturbation to be the solution for the norm=eps rather than
# norm=1 problem
scaled_perturbation = utils_tf.mul(eps, optimal_perturbation)
return scaled_perturbation
adv_x, grad_x, loss_x, _, _ = fgm(input_images,logits=out,eps=eps,clip_min=clip_min,clip_max=clip_max)
val_max_steps = int(val_nums / batch_size)
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
sess.run(tf.local_variables_initializer())
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(sess=sess, coord=coord)
#########################################Added by Ding
print("aaaaaaaaaaaaaaaaa=+++++++++++++++++++++++++++++")
saver.restore(sess,'models/caffe_ilsvrc12/resnet50_best_models_198000_0.7417.ckpt')
print("aaaaaaaaaaaaaaaaa=************************************")
x_test = np.zeros((val_nums,net_height,net_width,depths),dtype=np.float32)
y_test = np.zeros((val_nums,labels_nums),dtype=np.float32)
logits = np.zeros((val_nums,labels_nums),dtype=np.float32)
logits_adv = np.zeros((val_nums,labels_nums),dtype=np.float32)
adv = np.zeros((val_nums,net_height,net_width,depths),dtype=np.float32)
for i in range(val_max_steps):
if i%10 == 0:
print("i:{}".format(i))
val_x_bat, val_y_bat = sess.run([val_images_batch, val_labels_batch])
feed_dict = {input_images: val_x_bat, is_training: False}
logits_bat = sess.run(out, feed_dict=feed_dict)
feed_dict = {input_images: val_x_bat, is_training: False}
adv_bat = sess.run(adv_x,feed_dict=feed_dict)
feed_dict = {input_images: adv_bat, is_training: False}
logits_adv_bat = sess.run(out,feed_dict=feed_dict)
x_test[i*batch_size:(i+1)*batch_size,:,:,:] = val_x_bat
y_test[i*batch_size:(i+1)*batch_size,:] = val_y_bat
adv[i*batch_size:(i+1)*batch_size,:,:,:] = adv_bat#Ranged in [0, 1]
logits[i*batch_size:(i+1)*batch_size,:] = logits_bat
logits_adv[i*batch_size:(i+1)*batch_size,:] = logits_adv_bat
#########################################
coord.request_stop()
coord.join(threads)
# np.save("cifar10_ResNet50_augmodel_fgsminf_10000adv",adv)#save advs
batch_size = 10
percent_perturbed = np.mean(np.sum((adv - x_test)**2, axis=(1, 2, 3))**.5)
#for untargeted attack, suc_att_exam[i] is true means a successful classified examples
#for targeted attack, suc_att_exam[i] is true means a successful attack, it counts succeful attacked examples
dsae=0
kk=0
adv_suc_att_exam = np.equal(np.argmax(logits_adv,axis=1),np.argmax(y_test,axis=1))
suc_att_exam = np.equal(np.argmax(logits,axis=1),np.argmax(y_test,axis=1))
for i in range(len(adv_suc_att_exam)):
if adv_suc_att_exam[i]==0 and suc_att_exam[i]>0:#adversarial is misclassified but its corresponding binign example is correctly detected
dsae+=np.sum((adv[i,:,:,:] - x_test[i,:,:,:])**2)**.5
kk += 1
dsae=dsae/kk
print("For untargeted attack, the number of misclassified examples (successful attack), sum(adv_suc_att_exam==0):{}, dsae:{}".format(sum(adv_suc_att_exam==0),dsae))
print('Avg. L_2 norm of perturbations {0:.4f}'.format(percent_perturbed))
print('The number of successful attack:{}, Avg. L_2 norm of perturbations on successful attack / dsae:{}'.format(kk,dsae))
val_max_steps = int(len(adv) / batch_size/2)
adv_prob_legit = np.zeros((val_nums,labels_nums),dtype=np.float32)
test_prob_legit = np.zeros((val_nums,labels_nums),dtype=np.float32)
for i in range(val_max_steps):
#for test accuracy on legitimate examples extended by x_test
feed_dict = {input_images: adv[2*i*batch_size:2*(i+1)*batch_size,:,:,:], is_training: False}
adv_prob_legit[2*i*batch_size:2*(i+1)*batch_size,:] = sess.run(probs,feed_dict = feed_dict)
feed_dict = {input_images: x_test[2*i*batch_size:2*(i+1)*batch_size,:,:,:], is_training: False}
test_prob_legit[2*i*batch_size:2*(i+1)*batch_size,:] = sess.run(probs,feed_dict = feed_dict)
#########################################
auc_score_test = roc_auc_score(y_test, test_prob_legit)
auc_score_adv = roc_auc_score(y_test, adv_prob_legit)
print("auc_score_test:{},auc_score_adv:{}".format(auc_score_test, auc_score_adv))
logits = np.argmax(logits,axis=1)
logits_adv = np.argmax(logits_adv,axis=1)
y_test_argmax = np.argmax(y_test,axis=1)
acc = np.sum(np.equal(logits,y_test_argmax))/len(y_test_argmax)
acc_adv = np.sum(np.equal(logits_adv,y_test_argmax))/len(y_test_argmax)
print('Test accuracy on legitimate test examples: %0.4f' % (acc))
print('Test accuracy on adversarial test examples: %0.4f' % (acc_adv))
sess.close()