-
Notifications
You must be signed in to change notification settings - Fork 29
/
Copy pathbaseline.py
621 lines (517 loc) · 24.1 KB
/
baseline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
import torch
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.nn as nn
import torch.optim
import torch.utils.data
import torchvision.transforms as transforms
import torchvision.models as models
import random
import numpy as np
import argparse
import os
my_whole_seed = 111
torch.manual_seed(my_whole_seed)
torch.cuda.manual_seed_all(my_whole_seed)
torch.cuda.manual_seed(my_whole_seed)
np.random.seed(my_whole_seed)
random.seed(my_whole_seed)
cudnn.deterministic = True
cudnn.benchmark = False
import shutil
import time
from sklearn.metrics import roc_auc_score, accuracy_score, precision_score, recall_score, f1_score
from sklearn.preprocessing import label_binarize
from tensorboardX import SummaryWriter
model_names = sorted(name for name in models.__dict__
if name.islower() and not name.startswith("__")
and callable(models.__dict__[name]))
parser = argparse.ArgumentParser(description='PyTorch ImageNet Training')
parser.add_argument('data', metavar='DIR',
help='path to dataset')
parser.add_argument('dataset', metavar='Dataset')
parser.add_argument('model_dir', metavar='savedir')
parser.add_argument('-a', '--arch', metavar='ARCH', default='alexnet')
parser.add_argument('-j', '--workers', default=4, type=int, metavar='N',
help='number of data loading workers (default: 4)')
parser.add_argument('--epochs', default=300, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('--num_class', default=2, type=int)
parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
help='manual epoch number (useful on restarts)')
parser.add_argument('-b', '--batch-size', default=20, type=int,
metavar='N',
help='mini-batch size (default: 256), this is the total '
'batch size of all GPUs on the current node when '
'using Data Parallel or Distributed Data Parallel')
parser.add_argument('--lr', '--learning-rate', default=0.1, type=float,
metavar='LR', help='initial learning rate', dest='lr')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum')
parser.add_argument('--wd', '--weight-decay', default=1e-4, type=float,
metavar='W', help='weight decay (default: 1e-4)',
dest='weight_decay')
parser.add_argument('-p', '--print-freq', default=10, type=int,
metavar='N', help='print frequency (default: 10)')
parser.add_argument('--resume', default='', type=str, metavar='PATH',
help='path to latest checkpoint (default: none)')
parser.add_argument('-e', '--evaluate', dest='evaluate', action='store_true',
help='evaluate model on validation set')
parser.add_argument('--pretrained', dest='pretrained', action='store_true',
help='use pre-trained model')
parser.add_argument('--decay_epoch', default=15, type=int)
parser.add_argument('--seed', default=111, type=int,
help='seed for initializing training. ')
parser.add_argument('--gpu', default=None, type=int,
help='GPU id to use.')
parser.add_argument("--invalid", action="store_true")
parser.add_argument("--multitask", action="store_true")
parser.add_argument("--liu", action="store_true")
parser.add_argument("--chen", action="store_true")
parser.add_argument("--crossCBAM", action="store_true")
parser.add_argument("--CAN_TS", action="store_true")
parser.add_argument("--crosspatialCBAM", action="store_true")
parser.add_argument("--adam", action="store_true")
parser.add_argument("--choice", default="", type=str)
parser.add_argument("--net_type", default="regular", type=str)
parser.add_argument("--channels", default=109, type=int)
parser.add_argument("--nodes", default=32, type=int)
parser.add_argument("--graph_model", default="WS", type=str)
parser.add_argument("--K", default=4, type=int)
parser.add_argument("--P", default=0.75, type=float)
parser.add_argument("--fold_name", default="", type=str)
# lr
parser.add_argument("--lr_mode", default="cosine", type=str)
parser.add_argument("--base_lr", default=0.03, type=float)
parser.add_argument("--warmup_epochs", default=0, type=int)
parser.add_argument("--warmup_lr", default=0.0, type=float)
parser.add_argument("--targetlr", default=0.0, type=float)
parser.add_argument("--lambda_value", default=0.25, type=float)
# parser.add_argument('--momentum', default=5e-5, type=float, metavar='M',
# help='momentum')
best_acc1 = 0
best_auc = 0
best_accdr = 0
minimum_loss = 1.0
count = 0
def count_parameters(model):
return sum(p.numel() for p in model.parameters() if p.requires_grad)
def main():
args = parser.parse_args()
main_worker(args.gpu, args)
def worker_init_fn(worker_id):
random.seed(1 + worker_id)
def main_worker(gpu, args):
global best_acc1
global best_auc
global minimum_loss
global count
global best_accdr
args.gpu = gpu
if not os.path.exists(args.model_dir):
os.makedirs(args.model_dir)
if args.gpu is not None:
print("Use GPU: {} for training".format(args.gpu))
if args.arch == "resnet50":
from models.resnet50 import resnet50
model = resnet50(num_classes=args.num_class, multitask=args.multitask, liu=args.liu,
chen=args.chen, CAN_TS=args.CAN_TS, crossCBAM=args.crossCBAM,
crosspatialCBAM = args.crosspatialCBAM, choice=args.choice)
if args.pretrained:
print ("==> Load pretrained model")
model_dict = model.state_dict()
pretrain_path = {"resnet50": "pretrain/resnet50-19c8e357.pth",
"resnet34": "pretrain/resnet34-333f7ec4.pth",
"resnet18": "pretrain/resnet18-5c106cde.pth",
"densenet161": "pretrain/densenet161-8d451a50.pth",
"vgg11": "pretrain/vgg11-bbd30ac9.pth",
"densenet121": "pretrain/densenet121-a639ec97.pth"}[args.arch]
pretrained_dict = torch.load(pretrain_path)
pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict}
pretrained_dict.pop('classifier.weight', None)
pretrained_dict.pop('classifier.bias', None)
model_dict.update(pretrained_dict)
model.load_state_dict(model_dict)
torch.cuda.set_device(args.gpu)
model = model.cuda(args.gpu)
print(' Total params: %.2fM' % (sum(p.numel() for p in model.parameters()) / 1000000.0))
# define loss function (criterion) and optimizer
criterion = nn.CrossEntropyLoss().cuda(args.gpu)
if args.adam:
optimizer = torch.optim.Adam(model.parameters(), args.base_lr, weight_decay=args.weight_decay)
else:
optimizer = torch.optim.SGD(model.parameters(), args.base_lr,
momentum=args.momentum,
weight_decay=args.weight_decay)
# optionally resume from a checkpoint
if args.resume:
if os.path.isfile(args.resume):
print("=> loading checkpoint '{}'".format(args.resume))
checkpoint = torch.load(args.resume, map_location={'cuda:4':'cuda:0'})
# args.start_epoch = checkpoint['epoch']
# load partial weights
if not args.evaluate:
print ("load partial weights")
model_dict = model.state_dict()
pretrained_dict = {k: v for k, v in checkpoint['state_dict'].items() if k in model_dict}
model_dict.update(pretrained_dict)
model.load_state_dict(model_dict)
else:
print("load whole weights")
model.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
print("=> loaded checkpoint '{}' (epoch {})"
.format(args.resume, checkpoint['epoch']))
else:
print("=> no checkpoint found at '{}'".format(args.resume))
exit(0)
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
size = 224
tra = transforms.Compose([
transforms.Resize(256),
transforms.RandomResizedCrop(size),
transforms.RandomHorizontalFlip(),
transforms.RandomVerticalFlip(),
# transforms.RandomRotation(90),
# transforms.ColorJitter(0.05, 0.05, 0.05, 0.05),
transforms.ToTensor(),
normalize,
])
tra_test = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
normalize])
# tra = transforms.Compose([
# transforms.Resize(350),
# transforms.RandomHorizontalFlip(),
# transforms.RandomVerticalFlip(),
# # transforms.ColorJitter(0.2, 0.2, 0.2, 0.1),
# transforms.RandomRotation([-180, 180]),
# transforms.RandomAffine([-180, 180], translate=[0.1, 0.1], scale=[0.7, 1.3]),
# transforms.RandomCrop(224),
# # transforms.CenterCrop(224),
# transforms.ToTensor(),
# normalize
# ])
# IDRiD dataset
# tra = transforms.Compose([
# transforms.Resize(350),
# transforms.RandomHorizontalFlip(),
# transforms.RandomVerticalFlip(),
# # transforms.ColorJitter(0.2, 0.2, 0.2, 0.1),
# transforms.RandomRotation([-180, 180]),
# transforms.RandomAffine([-180, 180], translate=[0.1, 0.1], scale=[0.7, 1.3]),
# transforms.RandomResizedCrop(224, scale=(0.8, 1.0)),
# transforms.ToTensor(),
# normalize
# ])
# tra_test = transforms.Compose([
# transforms.Resize(350),
# transforms.CenterCrop(224),
# transforms.ToTensor(),
# normalize])
if args.dataset == 'amd':
from datasets.amd_dataset import traindataset
elif args.dataset == 'pm':
from datasets.pm_dataset import traindataset
elif args.dataset == "drdme":
from datasets.drdme_dataset import traindataset
elif args.dataset == "missidor":
from datasets.missidor import traindataset
elif args.dataset == "kaggle":
from datasets.kaggle import traindataset
else:
print ("no dataset")
exit(0)
val_dataset = traindataset(root=args.data, mode = 'val',
transform=tra_test, num_class=args.num_class,
multitask=args.multitask, args=args)
train_dataset = traindataset(root=args.data, mode='train', transform=tra, num_class=args.num_class,
multitask=args.multitask, args=args)
val_loader = torch.utils.data.DataLoader(
val_dataset,
batch_size=args.batch_size, shuffle=False,
num_workers=args.workers, pin_memory=True)
train_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=args.batch_size, shuffle=True,
num_workers=args.workers, pin_memory=True,worker_init_fn=worker_init_fn)
if args.evaluate:
a = time.time()
# savedir = args.resume.replace("model_converge.pth.tar","")
savedir = args.resume.replace(args.resume.split("/")[-1], "")
# savedir = "./"
if not args.multitask:
acc, auc, precision_dr, recall_dr, f1score_dr = validate(val_loader, model, args)
result_list = [acc, auc, precision_dr, recall_dr, f1score_dr]
print ("acc, auc, precision, recall, f1", acc, auc, precision_dr, recall_dr, f1score_dr)
save_result_txt(savedir, result_list)
print("time", time.time() - a)
return
else:
acc_dr, acc_dme, acc_joint, other_results, se, sp = validate(val_loader, model, args)
print ("acc_dr, acc_dme, acc_joint", acc_dr, acc_dme, acc_joint)
print ("auc_dr, auc_dme, precision_dr, precision_dme, recall_dr, recall_dme, f1score_dr, f1score_dme",
other_results)
print ("se, sp", se, sp)
result_list = [acc_dr, acc_dme, acc_joint]
result_list += other_results
result_list += [se, sp]
save_result_txt(savedir, result_list)
print ("time", time.time()-a)
return
writer = SummaryWriter("runs/"+args.model_dir.split("/")[-1])
writer.add_text('Text', str(args))
#
from lr_scheduler import LRScheduler
lr_scheduler = LRScheduler(optimizer, len(train_loader), args)
for epoch in range(args.start_epoch, args.epochs):
is_best = False
is_best_auc = False
is_best_acc = False
# train for one epoch
loss_train = train(train_loader, model, criterion, lr_scheduler, writer, epoch, optimizer, args)
writer.add_scalar('Train loss', loss_train, epoch)
# evaluate on validation set
if epoch % 20 == 0:
if args.dataset == "kaggle":
acc_dr, auc_dr = validate(val_loader, model, args)
writer.add_scalar("Val acc_dr", acc_dr, epoch)
writer.add_scalar("Val auc_dr", auc_dr, epoch)
is_best = acc_dr >= best_acc1
best_acc1 = max(acc_dr, best_acc1)
elif not args.multitask:
acc, auc, precision, recall, f1 = validate(val_loader, model, args)
writer.add_scalar("Val acc_dr", acc, epoch)
writer.add_scalar("Val auc_dr", auc, epoch)
is_best = auc >= best_acc1
best_acc1 = max(auc, best_acc1)
else:
acc_dr, acc_dme, joint_acc, other_results, se, sp = validate(val_loader, model, args)
writer.add_scalar("Val acc_dr", acc_dr, epoch)
writer.add_scalar("Val acc_dme", acc_dme, epoch)
writer.add_scalar("Val acc_joint", joint_acc, epoch)
writer.add_scalar("Val auc_dr", other_results[0], epoch)
writer.add_scalar("Val auc_dme", other_results[1], epoch)
is_best = joint_acc >= best_acc1
best_acc1 = max(joint_acc, best_acc1)
is_best_auc = other_results[0] >= best_auc
best_auc = max(other_results[0], best_auc)
is_best_acc = acc_dr >= best_accdr
best_accdr = max(acc_dr, best_accdr)
def train(train_loader, model, criterion, lr_scheduler, writer, epoch, optimizer, args):
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
# switch to train mode
model.train()
end = time.time()
for i, (input, target, name) in enumerate(train_loader):
# measure data loading time
data_time.update(time.time() - end)
lr = lr_scheduler.update(i, epoch)
writer.add_scalar("lr", lr, epoch)
if args.gpu is not None:
input = input.cuda(args.gpu, non_blocking = True)
if args.multitask:
target = [item.cuda(args.gpu, non_blocking = True) for item in target]
else:
target = target.cuda(args.gpu, non_blocking = True)
# compute output
output = model(input)
if args.multitask:
loss1 = criterion(output[0], target[0])
loss2 = criterion(output[1], target[1])
if args.crossCBAM:
loss3 = criterion(output[2], target[0])
loss4 = criterion(output[3], target[1])
loss = (loss1 + loss2 + args.lambda_value *loss3 + args.lambda_value * loss4)
else:
loss = (loss1 + loss2)
else:
loss = criterion(output, target)
losses.update(loss.item(), input.size(0))
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
return losses.avg
from sklearn.metrics import confusion_matrix
import scipy.misc
from skimage.transform import resize
def validate(val_loader, model, args):
# switch to evaluate mode
model.eval()
all_target = []
all_target_dme = []
all_output = []
all_name = []
all_output_dme = []
with torch.no_grad():
for i, (input, target, name) in enumerate(val_loader):
if args.gpu is not None:
input = input.cuda(args.gpu, non_blocking=True)
if args.multitask:
target = [item.cuda(args.gpu, non_blocking=True) for item in target]
else:
target = target.cuda(args.gpu, non_blocking=True)
output = model(input)
torch.cuda.synchronize()
if args.multitask:
output0 = output[0]
output1 = output[1]
output0 = torch.softmax(output0, dim=1)
output1 = torch.softmax(output1, dim=1)
all_target.append(target[0].cpu().data.numpy())
all_output.append(output0.cpu().data.numpy())
all_target_dme.append(target[1].cpu().data.numpy())
all_output_dme.append(output1.cpu().data.numpy())
else:
output = torch.softmax(output, dim=1)
all_target.append(target.cpu().data.numpy())
all_output.append(output.cpu().data.numpy())
all_name.append(name)
if args.dataset == "kaggle":
all_output = [item for sublist in all_output for item in sublist]
all_target = [item for sublist in all_target for item in sublist]
acc_dr = accuracy_score(all_target, np.argmax(all_output, axis=1))
auc_dr = multi_class_auc(all_target, all_output, num_c=5)
return acc_dr, auc_dr
elif not args.multitask:
all_target = [item for sublist in all_target for item in sublist]
all_output = [item for sublist in all_output for item in sublist]
if args.num_class == 2:
acc = accuracy_score(all_target, np.argmax(all_output,axis=1))
auc = roc_auc_score(all_target, [item[1] for item in all_output])
precision_dr = precision_score(all_target, np.argmax(all_output, axis=1))
recall_dr = recall_score(all_target, np.argmax(all_output, axis=1))
f1score_dr = f1_score(all_target, np.argmax(all_output, axis=1))
else:
acc = accuracy_score(all_target, np.argmax(all_output, axis=1))
auc = multi_class_auc(all_target, all_output, num_c=3)
precision_dr = precision_score(all_target, np.argmax(all_output, axis=1), average="macro")
recall_dr = recall_score(all_target, np.argmax(all_output, axis=1), average="macro")
f1score_dr = f1_score(all_target, np.argmax(all_output, axis=1), average="macro")
return acc, auc, precision_dr, recall_dr, f1score_dr
else:
all_target = [item for sublist in all_target for item in sublist]
all_output = [item for sublist in all_output for item in sublist]
all_target_dme = [item for sublist in all_target_dme for item in sublist]
all_output_dme = [item for sublist in all_output_dme for item in sublist]
# acc
acc_dr = accuracy_score(all_target, np.argmax(all_output,axis=1))
acc_dme = accuracy_score(all_target_dme, np.argmax(all_output_dme, axis=1))
# joint acc
joint_result = np.vstack((np.argmax(all_output, axis=1), np.argmax(all_output_dme, axis=1)))
joint_target = np.vstack((all_target, all_target_dme))
joint_acc = ((np.equal(joint_result, joint_target) == True).sum(axis=0) == 2).sum() / joint_result.shape[1]
# auc
if args.dataset == "missidor":
auc_dr = roc_auc_score(all_target, [item[1] for item in all_output])
else:
auc_dr = multi_class_auc(all_target, all_output, num_c = 5)
auc_dme = multi_class_auc(all_target_dme, all_output_dme, num_c = 3)
# precision
if args.dataset == "missidor":
precision_dr = precision_score(all_target, np.argmax(all_output, axis=1))
else:
precision_dr = precision_score(all_target, np.argmax(all_output, axis=1), average="macro")
precision_dme = precision_score(all_target_dme, np.argmax(all_output_dme, axis=1), average="macro")
# recall
if args.dataset == "missidor":
recall_dr = recall_score(all_target, np.argmax(all_output, axis=1))
else:
recall_dr = recall_score(all_target, np.argmax(all_output, axis=1), average="macro")
recall_dme = recall_score(all_target_dme, np.argmax(all_output_dme, axis=1), average="macro")
# f1_score
if args.dataset == "missidor":
f1score_dr = f1_score(all_target, np.argmax(all_output, axis=1))
else:
f1score_dr = f1_score(all_target, np.argmax(all_output, axis=1), average="macro")
f1score_dme = f1_score(all_target_dme, np.argmax(all_output_dme, axis=1), average="macro")
cm1 = confusion_matrix(all_target, np.argmax(all_output, axis=1))
sensitivity1 = cm1[0, 0] / (cm1[0, 0] + cm1[0, 1])
specificity1 = cm1[1, 1] / (cm1[1, 0] + cm1[1, 1])
return acc_dr, acc_dme, joint_acc, \
[auc_dr, auc_dme, precision_dr, precision_dme, recall_dr, recall_dme, f1score_dr, f1score_dme],\
sensitivity1, specificity1
def softmax(x):
"""Compute softmax values for each sets of scores in x."""
e_x = np.exp(x - np.max(x))
return e_x / e_x.sum(axis=0) # only difference
def save_checkpoint(state, is_best, filename='checkpoint.pth.tar', save_dir= 'file'):
root = save_dir + "/"
if not os.path.exists(root):
os.makedirs(root)
torch.save(state, root+filename)
def save_result2txt(savedir, all_output_dme, all_output,all_target_dme,all_target):
np.savetxt(savedir+"/output_dme.txt", all_output_dme, fmt='%.4f')
np.savetxt(savedir+"/output_dr.txt", all_output, fmt='%.4f')
np.savetxt(savedir+"/target_dme.txt", all_target_dme)
np.savetxt(savedir+"/target_dr.txt", all_target)
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def multi_class_auc(all_target, all_output, num_c = None):
all_output = np.stack(all_output)
all_target = label_binarize(all_target, classes=list(range(0, num_c)))
auc_sum = []
for num_class in range(0, num_c):
try:
auc = roc_auc_score(all_target[:, num_class], all_output[:, num_class])
auc_sum.append(auc)
except ValueError:
pass
auc = sum(auc_sum) / float(len(auc_sum))
return auc
def adjust_learning_rate(optimizer, epoch, args):
"""Sets the learning rate to the initial LR decayed by 10 every 30 epochs"""
lr = args.lr * (0.1 ** (epoch // args.decay_epoch))
for param_group in optimizer.param_groups:
param_group['lr'] = lr
return lr
def accuracy(output, target, topk=(1,)):
"""Computes the accuracy over the k top predictions for the specified values of k"""
with torch.no_grad():
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(100.0 / batch_size))
return res
def one_hot_embedding(labels, num_classes):
"""Embedding labels to one-hot form.
Args:
labels: (LongTensor) class labels, sized [N,].
num_classes: (int) number of classes.
Returns:
(tensor) encoded labels, sized [N, #classes].
"""
y = torch.eye(num_classes)
return y[labels].cuda()
def save_result_txt(savedir, result):
with open(savedir + '/result.txt', 'w') as f:
for item in result:
f.write("%.8f\n" % item)
f.close()
if __name__ == '__main__':
main()