-
Notifications
You must be signed in to change notification settings - Fork 0
/
audioUtils.py
executable file
·65 lines (56 loc) · 1.98 KB
/
audioUtils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
"""
Utility functions for audio files
"""
import librosa
import os
from tqdm import tqdm
import numpy as np
#import matplotlib.pyplot as plt
import itertools
'''
def plot_confusion_matrix(cm, classes,
normalize=False,
title='Confusion matrix',
cmap=plt.cm.Blues):
"""
This function prints and plots the confusion matrix.
Normalization can be applied by setting `normalize=True`.
"""
if normalize:
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
print("Normalized confusion matrix")
else:
print('Confusion matrix, without normalization')
#print(cm)
plt.figure(figsize=(25,25))
plt.imshow(cm, interpolation='nearest', cmap=cmap)
plt.title(title, fontsize=30)
plt.colorbar()
tick_marks = np.arange(len(classes))
plt.xticks(tick_marks, classes, rotation=45, fontsize=15)
plt.yticks(tick_marks, classes, fontsize=15)
fmt = '.3f' if normalize else 'd'
thresh = cm.max() / 2.
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
plt.text(j, i, format(cm[i, j], fmt), size=11,
horizontalalignment="center",
color="white" if cm[i, j] > thresh else "black")
plt.ylabel('True label', fontsize=30)
plt.xlabel('Predicted label', fontsize=30)
plt.savefig('picConfMatrix.png', dpi = 400)
plt.tight_layout()
'''
def WAV2Numpy(folder, sr = None):
"""
Recursively converts WAV to numpy arrays. Deletes the WAV files in the process
folder - folder to convert.
"""
allFiles = []
for root, dirs, files in os.walk(folder):
allFiles += [os.path.join(root, f) for f in files if f.endswith('.wav')]
for file in tqdm(allFiles):
y, sr = librosa.load(file, sr=None)
#if we want to write the file later
#librosa.output.write_wav('file.wav', y, sr, norm=False)
np.save(file+'.npy', y)
os.remove(file)