Skip to content

Latest commit

 

History

History
48 lines (46 loc) · 13.4 KB

参考文献.md

File metadata and controls

48 lines (46 loc) · 13.4 KB
论文序号 研究领域 网络架构 引用格式
[1] 目标检测 FasterRCNN Ren S, He K, Girshick R, et al. Faster r-cnn: Towards real-time object detection with region proposal networks[J]. Advances in neural information processing systems, 2015, 28.
[2] 目标检测 Yolov3 Redmon J, Farhadi A. Yolov3: An incremental improvement[J]. arXiv preprint arXiv:1804.02767, 2018.
[3] 目标检测 Yolov4 Bochkovskiy A, Wang C Y, Liao H Y M. Yolov4: Optimal speed and accuracy of object detection[J]. arXiv preprint arXiv:2004.10934, 2020.
[4] 目标检测 CornerNet Law H, Deng J. Cornernet: Detecting objects as paired keypoints[C]//Proceedings of the European conference on computer vision (ECCV). 2018: 734-750.
[5] 目标检测 CenterNet Zhao Z Q, Zheng P, Xu S, et al. Object detection with deep learning: A review[J]. IEEE transactions on neural networks and learning systems, 2019, 30(11): 3212-3232.
[6] 目标检测 DETR Carion N, Massa F, Synnaeve G, et al. End-to-end object detection with transformers[C]//European conference on computer vision. Cham: Springer International Publishing, 2020: 213-229.
[7] 目标跟踪 ARTrack Wei X, Bai Y, Zheng Y, et al. Autoregressive visual tracking[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2023: 9697-9706.
[8] 目标跟踪 DropMAE Wu Q, Yang T, Liu Z, et al. Dropmae: Masked autoencoders with spatial-attention dropout for tracking tasks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2023: 14561-14571.
[9] 目标跟踪 QCT Zhu W, Xu L, Meng J. Consistency-based self-supervised visual tracking by using query-communication transformer[J]. Knowledge-Based Systems, 2023, 278: 110849.
[10] 目标跟踪 RTS Paul M, Danelljan M, Mayer C, et al. Robust visual tracking by segmentation[C]//European Conference on Computer Vision. Cham: Springer Nature Switzerland, 2022: 571-588.
[11] 目标跟踪 ConTACT Choi J, Baik S, Choi M, et al. Visual tracking by adaptive continual meta-learning[J]. IEEE Access, 2022, 10: 9022-9035.
[12] 图像分割 DetectoRS Qiao S, Chen L C, Yuille A. Detectors: Detecting objects with recursive feature pyramid and switchable atrous convolution[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2021: 10213-10224.
[13] 图像分割 PolarMask Xie E, Sun P, Song X, et al. Polarmask: Single shot instance segmentation with polar representation[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2020: 12193-12202.
[14] 图像分割 Segment Anything Kirillov A, Mintun E, Ravi N, et al. Segment anything[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. 2023: 4015-4026.
[15] 人体动作识别 Temporal Templates Bobick A F, Davis J W. The recognition of human movement using temporal templates[J]. IEEE Transactions on pattern analysis and machine intelligence, 2001, 23(3): 257-267.
[16] 循环神经网络 RNN Schmidt R M. Recurrent neural networks (rnns): A gentle introduction and overview[J]. arXiv preprint arXiv:1912.05911, 2019.
[17] 循环神经网络 LSTM Graves A, Graves A. Long short-term memory[J]. Supervised sequence labelling with recurrent neural networks, 2012: 37-45.
[18] 循环神经网络 GRU Chung J, Gulcehre C, Cho K H, et al. Empirical evaluation of gated recurrent neural networks on sequence modeling[J]. arXiv preprint arXiv:1412.3555, 2014.
[19] 循环神经网络 CompositeLSTM Srivastava N, Mansimov E, Salakhudinov R. Unsupervised learning of video representations using lstms[C]//International conference on machine learning. PMLR, 2015: 843-852.
[20] 循环神经网络 ConvLSTM Shi X, Chen Z, Wang H, et al. Convolutional LSTM network: A machine learning approach for precipitation nowcasting[J]. Advances in neural information processing systems, 2015, 28.
[21] 循环神经网络 LRCN Donahue J, Anne Hendricks L, Guadarrama S, et al. Long-term recurrent convolutional networks for visual recognition and description[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2015: 2625-2634.
[22] 三维卷积特征提取 C3D Tran D, Bourdev L, Fergus R, et al. Learning spatiotemporal features with 3d convolutional networks[C]//Proceedings of the IEEE international conference on computer vision. 2015: 4489-4497.
[23] 三维卷积特征提取 I3D Peng Y, Lee J, Watanabe S. I3D: Transformer architectures with input-dependent dynamic depth for speech recognition[C]//ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2023: 1-5.
[24] 图神经网络 GNN Gori M, Monfardini G, Scarselli F. A new model for learning in graph domains[C]//Proceedings. 2005 IEEE international joint conference on neural networks, 2005. IEEE, 2005, 2: 729-734.
[25] 图卷积网络 ConvGNN Bruna J, Zaremba W, Szlam A, et al. Spectral networks and locally connected networks on graphs[J]. arXiv preprint arXiv:1312.6203, 2013.
[26] 图卷积网络 ConvGNN Henaff M, Bruna J, LeCun Y. Deep convolutional networks on graph-structured data[J]. arXiv preprint arXiv:1506.05163, 2015.
[27] 图卷积网络 Diffusion ConvGNN Atwood J, Towsley D. Diffusion-convolutional neural networks[J]. Advances in neural information processing systems, 2016, 29.
[28] 人体动作识别 ST-GCN Yan S, Xiong Y, Lin D. Spatial temporal graph convolutional networks for skeleton-based action recognition[C]//Proceedings of the AAAI conference on artificial intelligence. 2018, 32(1).
[29] 人体动作识别 MS-G3D Liu Z, Zhang H, Chen Z, et al. Disentangling and unifying graph convolutions for skeleton-based action recognition[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2020: 143-152.
[30] 人体动作识别 CTR-GCN Chen Y, Zhang Z, Yuan C, et al. Channel-wise topology refinement graph convolution for skeleton-based action recognition[C]//Proceedings of the IEEE/CVF international conference on computer vision. 2021: 13359-13368.
[31] 数据集 NTU RGB+D Shahroudy A, Liu J, Ng T T, et al. Ntu rgb+ d: A large scale dataset for 3d human activity analysis[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2016: 1010-1019.
[32] 数据集 NTU RGB+D 120 Liu J, Shahroudy A, Perez M, et al. Ntu rgb+ d 120: A large-scale benchmark for 3d human activity understanding[J]. IEEE transactions on pattern analysis and machine intelligence, 2019, 42(10): 2684-2701.
[33] 数据集 Kinetics Kay W, Carreira J, Simonyan K, et al. The kinetics human action video dataset[J]. arXiv preprint arXiv:1705.06950, 2017.
[34] 图神经网络 GNN Sperduti A, Starita A. Supervised neural networks for the classification of structures[J]. IEEE transactions on neural networks, 1997, 8(3): 714-735.
[35] 卷积神经网络 CNN综述 Hadji I, Wildes R P. What do we understand about convolutional networks?[J]. arXiv preprint arXiv:1803.08834, 2018.
[36] 图像特征提取 LBP Hadid A. The local binary pattern approach and its applications to face analysis[C]//2008 First Workshops on Image Processing Theory, Tools and Applications. IEEE, 2008: 1-9.
[37] 卷积神经网络 CNN D. H. Hubel and T. N. Wiesel.Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex.The Journal of Physiology, 160:106–154, 1962.
[38] 目标检测 Yolov9 Wang C Y, Yeh I H, Liao H Y M. YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information[J]. arXiv preprint arXiv:2402.13616, 2024.
[39] 数据结构 数据结构与算法 梁海英,王凤领.数据结构:C语言版[M].北京:清华大学出版社,2017.
[40] 人体动作识别 2s-AGCN Shi L, Zhang Y, Cheng J, et al. Two-stream adaptive graph convolutional networks for skeleton-based action recognition[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2019: 12026-12035.
[41] 梯度下降策略 SGD Robbins H, Monro S. A stochastic approximation method[J]. The annals of mathematical statistics, 1951: 400-407.
[42] 梯度下降策略 Adam Diederik P K. Adam: A method for stochastic optimization[J]. (No Title), 2014.
[43] 梯度下降策略 Dropout Srivastava N, Hinton G, Krizhevsky A, et al. Dropout: a simple way to prevent neural networks from overfitting[J]. The journal of machine learning research, 2014, 15(1): 1929-1958.
[44] 注意力机制 Attention Guo M H, Xu T X, Liu J J, et al. Attention mechanisms in computer vision: A survey[J]. Computational visual media, 2022, 8(3): 331-368.