forked from tensorflow/nmt
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinference.py
257 lines (220 loc) · 8.69 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
# Copyright 2017 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""To perform inference on test set given a trained model."""
from __future__ import print_function
import codecs
import time
import tensorflow as tf
from . import attention_model
from . import gnmt_model
from . import model as nmt_model
from . import model_helper
from .utils import misc_utils as utils
from .utils import nmt_utils
__all__ = ["load_data", "inference",
"single_worker_inference", "multi_worker_inference"]
def _decode_inference_indices(model, sess, output_infer,
output_infer_summary_prefix,
inference_indices,
tgt_eos,
subword_option):
"""Decoding only a specific set of sentences."""
utils.print_out(" decoding to output %s , num sents %d." %
(output_infer, len(inference_indices)))
start_time = time.time()
with codecs.getwriter("utf-8")(
tf.gfile.GFile(output_infer, mode="wb")) as trans_f:
trans_f.write("") # Write empty string to ensure file is created.
for decode_id in inference_indices:
nmt_outputs, infer_summary = model.decode(sess)
# get text translation
assert nmt_outputs.shape[0] == 1
translation = nmt_utils.get_translation(
nmt_outputs,
sent_id=0,
tgt_eos=tgt_eos,
subword_option=subword_option)
if infer_summary is not None: # Attention models
image_file = output_infer_summary_prefix + str(decode_id) + ".png"
utils.print_out(" save attention image to %s*" % image_file)
image_summ = tf.Summary()
image_summ.ParseFromString(infer_summary)
with tf.gfile.GFile(image_file, mode="w") as img_f:
img_f.write(image_summ.value[0].image.encoded_image_string)
trans_f.write("%s\n" % translation)
utils.print_out(translation + b"\n")
utils.print_time(" done", start_time)
def load_data(inference_input_file, hparams=None):
"""Load inference data."""
with codecs.getreader("utf-8")(
tf.gfile.GFile(inference_input_file, mode="rb")) as f:
inference_data = f.read().splitlines()
if hparams and hparams.inference_indices:
inference_data = [inference_data[i] for i in hparams.inference_indices]
return inference_data
def get_model_creator(hparams):
"""Get the right model class depending on configuration."""
if (hparams.encoder_type == "gnmt" or
hparams.attention_architecture in ["gnmt", "gnmt_v2"]):
model_creator = gnmt_model.GNMTModel
elif hparams.attention_architecture == "standard":
model_creator = attention_model.AttentionModel
elif not hparams.attention:
model_creator = nmt_model.Model
else:
raise ValueError("Unknown attention architecture %s" %
hparams.attention_architecture)
return model_creator
def start_sess_and_load_model(infer_model, ckpt_path):
"""Start session and load model."""
sess = tf.Session(
graph=infer_model.graph, config=utils.get_config_proto())
with infer_model.graph.as_default():
loaded_infer_model = model_helper.load_model(
infer_model.model, ckpt_path, sess, "infer")
return sess, loaded_infer_model
def inference(ckpt_path,
inference_input_file,
inference_output_file,
hparams,
num_workers=1,
jobid=0,
scope=None):
"""Perform translation."""
if hparams.inference_indices:
assert num_workers == 1
model_creator = get_model_creator(hparams)
infer_model = model_helper.create_infer_model(model_creator, hparams, scope)
sess, loaded_infer_model = start_sess_and_load_model(infer_model, ckpt_path)
if num_workers == 1:
single_worker_inference(
sess,
infer_model,
loaded_infer_model,
inference_input_file,
inference_output_file,
hparams)
else:
multi_worker_inference(
sess,
infer_model,
loaded_infer_model,
inference_input_file,
inference_output_file,
hparams,
num_workers=num_workers,
jobid=jobid)
sess.close()
def single_worker_inference(sess,
infer_model,
loaded_infer_model,
inference_input_file,
inference_output_file,
hparams):
"""Inference with a single worker."""
output_infer = inference_output_file
# Read data
infer_data = load_data(inference_input_file, hparams)
with infer_model.graph.as_default():
sess.run(
infer_model.iterator.initializer,
feed_dict={
infer_model.src_placeholder: infer_data,
infer_model.batch_size_placeholder: hparams.infer_batch_size
})
# Decode
utils.print_out("# Start decoding")
if hparams.inference_indices:
_decode_inference_indices(
loaded_infer_model,
sess,
output_infer=output_infer,
output_infer_summary_prefix=output_infer,
inference_indices=hparams.inference_indices,
tgt_eos=hparams.eos,
subword_option=hparams.subword_option)
else:
nmt_utils.decode_and_evaluate(
"infer",
loaded_infer_model,
sess,
output_infer,
ref_file=None,
metrics=hparams.metrics,
subword_option=hparams.subword_option,
beam_width=hparams.beam_width,
tgt_eos=hparams.eos,
num_translations_per_input=hparams.num_translations_per_input,
infer_mode=hparams.infer_mode)
def multi_worker_inference(sess,
infer_model,
loaded_infer_model,
inference_input_file,
inference_output_file,
hparams,
num_workers,
jobid):
"""Inference using multiple workers."""
assert num_workers > 1
final_output_infer = inference_output_file
output_infer = "%s_%d" % (inference_output_file, jobid)
output_infer_done = "%s_done_%d" % (inference_output_file, jobid)
# Read data
infer_data = load_data(inference_input_file, hparams)
# Split data to multiple workers
total_load = len(infer_data)
load_per_worker = int((total_load - 1) / num_workers) + 1
start_position = jobid * load_per_worker
end_position = min(start_position + load_per_worker, total_load)
infer_data = infer_data[start_position:end_position]
with infer_model.graph.as_default():
sess.run(infer_model.iterator.initializer,
{
infer_model.src_placeholder: infer_data,
infer_model.batch_size_placeholder: hparams.infer_batch_size
})
# Decode
utils.print_out("# Start decoding")
nmt_utils.decode_and_evaluate(
"infer",
loaded_infer_model,
sess,
output_infer,
ref_file=None,
metrics=hparams.metrics,
subword_option=hparams.subword_option,
beam_width=hparams.beam_width,
tgt_eos=hparams.eos,
num_translations_per_input=hparams.num_translations_per_input,
infer_mode=hparams.infer_mode)
# Change file name to indicate the file writing is completed.
tf.gfile.Rename(output_infer, output_infer_done, overwrite=True)
# Job 0 is responsible for the clean up.
if jobid != 0: return
# Now write all translations
with codecs.getwriter("utf-8")(
tf.gfile.GFile(final_output_infer, mode="wb")) as final_f:
for worker_id in range(num_workers):
worker_infer_done = "%s_done_%d" % (inference_output_file, worker_id)
while not tf.gfile.Exists(worker_infer_done):
utils.print_out(" waiting job %d to complete." % worker_id)
time.sleep(10)
with codecs.getreader("utf-8")(
tf.gfile.GFile(worker_infer_done, mode="rb")) as f:
for translation in f:
final_f.write("%s" % translation)
for worker_id in range(num_workers):
worker_infer_done = "%s_done_%d" % (inference_output_file, worker_id)
tf.gfile.Remove(worker_infer_done)